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THESE ARE EXCITING TIMES IN THE 
WORLD OF SPATIAL AND SINGLE-CELL 
BIOLOGY. DEVELOPMENT APPEARS 
TO BE HAPPENING ON ALL FRONTS. 
WHILE SINGLE-CELL TRANSCRIPTOMICS 
IS BEGINNING TO MATURE INTO 
A RELIABLE, STANDARDISED 
TECHNOLOGY, OPTIONS IN SPATIAL 
BIOLOGY ARE MULTIPLYING. 

In this playbook, we cover a breadth of topics in this 
space. Within, you will find an overview of many of the 
commercial technologies and computational tools that 
are available to you, which could improve and assist 
your work. We also cover some specific applications 
of these tools, such as: how to get the most out of 
multiplexed and multimodal data, an overview of 
cell microenvironment and cell-cell communication 
methods and a deep dive into single-cell and spatial 
epigenomics methodologies. 

While we cannot claim to have covered every nook 
and cranny, this playbook provides an up-to-date 
overview spatial and single-cell analysis for 2023. 

Furthermore, by interviewing a series of experts 
in the field, we have gained unique insights and 
guidance, which have shaped this playbook. Excerpts 
from our discussions with these experts are found 
throughout the chapters. Within them, you will find 
advice on how to get the most out of specific tools, 
hard fought wisdom gained from working with these 
technologies and designing new tools, as well as 
perspectives and views on current topics in spatial 
and single-cell. 

We would like to take this opportunity to thank all 
of our contributors for their time and insights with 
writing this playbook. 

We would also like to thank the sponsors of this 
report, 10x Genomics, Canopy Biosciences, Miltenyi 
Biotec, BD Biosciences & Single Cell Discoveries

We hope you find this playbook a helpful resource.

Thank you for reading.

FOREWORD
Matt Higgs

Science Writer 
Front Line Genomics

Team Acknowledgements:
Lyndsey Fletcher and Rich Lumb from 

Front Line Genomics, for their support with 
editing and proofreading
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CHAPTER 1

LOOKING INTO THE PAST. SINGLE-CELL AND 
SPATIAL TRANSCRIPTOMICS: A HISTORY
THIS CHAPTER  BEGINS BY LOOKING BACK OVER THE HISTORY OF 
SINGLE-CELL AND SPATIAL ANALYSIS. WE WILL COVER SEVERAL OF 

THE KEY DEVELOPMENTAL MILESTONES FOR BOTH SINGLE-CELL AND 
SPATIAL TECHNOLOGIES AND LOOK AT ATTEMPTS TO MERGE THESE 

TECHNOLOGIES TO ACHIEVE THE BEST OF BOTH WORLDS. 

Deconstructing the smoothie
Organisms are complex entities, made up of many different tissues. Tissues themselves are also complex entities, 
made up of many different types of cell. Prior to the first single-cell methodologies, standard genomic practice used 
bulk tissue to try to understand the genomic and transcriptomic profiles of tissues1. 

A popular analogy has described this as the equivalent of trying to understand fruit by analysing a smoothie (Figure 1). 
You can learn a lot about fruit in general (i.e., the average abundance of banana) but trying to understand  specific fruit 
becomes a problem when it’s all blended together. 

Single-cell sequencing is the equivalent of trying to learn about fruit from a fruit salad. With the right tools, you can 
separate out all the different types of fruit and learn about their differences. Like pulling apart a jigsaw, these tools 
allow us to identify the cells that make up tissues, which genes they express, what epigenetic alterations they may 
have and what proteins have been translated. 

Method of the year 2013, 2019 and 2020
Nature Methods has consistently recognized the power of single-cell and spatial technologies since their inception. In 
2013, single-cell transcriptomics was awarded the method of the year with the hope that methods to sequence the 
DNA and RNA of single cells could transform many areas of biology and medicine2. This award was given at the turning 
point for single-cell methods, when commercial offerings and technological improvements (e.g., microfluidics and 
microwells) were making the adoption of single-cell methods easier and more efficient. 

FIGURE 1: FRUIT ANALOGY OF SINGLE-CELL AND SPATIAL BIOLOGY.
Bulk sequencing takes data from all cells in a tissue at once, like sampling a smoothie. Single-cell sequencing allows data from each individual cell 
in a tissue to be analysed, like separating out fruit in a fruit salad. Spatial can acquire data from individual cells but maintains spatial context, like 
examining fruit in their proper places on a fruit tart. Images acquired from Canva.

https://www.nature.com/articles/nmeth.2801
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LOOKING INTO THE PAST. SINGLE-CELL AND SPATIAL TRANSCRIPTOMICS: A HISTORY

Single-cell technologies overcame the obscuring nature of bulk transcriptomics and allowed scientists to distinguish and 
characterize rare, but important, cell types from a tissue mass. Figure 2 shows the basic workflow of single-cell technology.

As we will cover below, our ability to sequence single cells has improved in throughput, consistency and cost. However, 
the analysis of genomics using a single-cell lens diversified in two further directions. 

The first direction follows an appreciation that a cell cannot be understood purely from its genome or transcriptome. 
Instead, the epigenome, proteome and metabolome are needed to build a holistic picture of the molecular makeup of a cell 
at any one time. The resulting diversification of methods for single-cell multiomics was recognized by Nature Methods with 
the award of method of the year in 20194. In that time, it has become clear that taking multimodal measurements (such as 
both RNA and protein) from cells often reveals more about molecular dynamics than the sum of its parts. It can be used to 
resolve cell populations with subtle transcriptomic differences and truly capture the molecular makeup of a tissue.

The second direction that single-cell transcriptomics has progressed in has been to reintegrate the spatial dimension. 
Spatially resolved transcriptomics picked up the method of the year award in the following year, 20205. Spatial omics 
provides essential information about gene expression while retaining spatial context, i.e., which cells are neighbours 
or close-by and where a rare cell-type is situated. This context is a crucial dimension to all tissues, but has proven 
particularly valuable for tumour biology, neuroscience and developmental biology. Taking our previous analogy, if 
single-cell sequencing is the equivalent of analysing a fruit salad, them spatial transcriptomics is the equivalent of 
analysing a fruit tart. The fruit can be assessed in the same way as in the fruit salad, but this time, in their proper 
places and in relation to one-another. We can learn all the same things we can with single-cell sequencing (although, 
currently, with less sophistication) and also learn about the organisation of cells and interactions between them. 

Today
We are now in 2023 and these technologies are still developing rapidly. It appears we are progressing towards a 
holistic methodology - a spatially-resolved, multimodal, single-cell assessment of tissues, or even whole organisms6. 
This would amount to single-cell biology being brought into complete cellular resolution. These data would allow us to 
visualize the cellular level changes at the onset of disease, infection or any other perturbation to the body.

We do not have this holistic methodology yet. Part of the reason is because these single-cell and spatial technologies 
still have their challenges. The rest of this report is focused on challenges and solutions from the now, and those we 
anticipate in the future. 

FIGURE 2: BASIC WORKFLOW OF SINGLE-CELL SEQUENCING.
Image Credit: Pan, et al.3

https://www.nature.com/articles/s41592-019-0703-5
https://www.nature.com/articles/s41592-020-01042-x
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LOOKING INTO THE PAST. SINGLE-CELL AND SPATIAL TRANSCRIPTOMICS: A HISTORY

However, it is always worth seeing how far we have come and examining the challenges from the past too. The 
remainder of this first chapter will outline a condensed overview of the history of these technologies and how the 
capabilities have expanded to the present day. With the first major single-cell transcriptomics study published in 20097, 
these technologies are approaching their 15th anniversary. So, strap yourself in for this whistlestop tour of single-cell 
and spatial biology.

2023: Almost 15 years of singularity
Single-cell sequencing has become a powerful tool for understanding complex biological systems3,8-10. The story formally 
began in 2009 with a publication in which scientists were manually isolating mouse blastomeres for sequencing, 
acquiring transcriptomic information from single cells7. From here, there was a gradual but significant advance in the 
number of cells that could be profiled. In 2011, the advent of cell-specific barcodes allowed for multiplexing and pooling, 
which meant 100s of cells could be sequenced using a method called STRT11. Fluidic circuits improved this further, and 
2013 saw the release of the Fluidigm C1, the first single-cell automated prep system12,13. MARS-seq14 in 2014 combined 
fluorescence activated cell sorting (FACS) and automatic liquid handling to substantially increase the throughput. 

The introduction of droplet methods in 2015, inDrop15 & Drop-seq16, saw a leap in cell throughput into the 10s of 1000s. The 
release of 10x Genomics’ Chromium in 2016 was pivotal, utilising this technology to create a benchtop option for all scientists. 
2017 saw a new methodology emerge, a combinatorial indexing strategy known as sci-RNA-seq17, currently in its third 
iteration18, which, alongside SPLiT-seq19, is pushing the heights of single-cell throughput into the 100,000s and 1,000,000s. 

This advancement in single-cell throughput is proceeding faster the Moore’s law20, and if it continues at this pace it 
could be feasible that we could eventually see methods capable of sequencing the trillions of cells that make up one 
human body. Figures 3A and 4 show 
the trajectory of cell throughput 
capacity of single-cell technologies 
and the technologies that have driven 
this progression. 

Alongside the advances in throughput, 
technologies such as Smart-seq21,22 
and CEL-seq23,24 that were pioneered 
in 2012 have been improving the 
sensitivity of single-cell RNA-sequencing, 
allowing many more transcripts to be 
detected while sacrificing the high cell 
throughput. Both of these techniques 
have seen updates with the most 
recent, Smart-Seq3, released in 202025, 
allowing full length transcript coverage 
combined with UMI counting strategy to 
offer the most sensitive single-cell RNA 
sequencing method.

The most recent single-cell 
transcriptomic approaches are shifting 
in two directions. One set of methods 
are moving away from cell isolation 
methods towards measuring full 
transcriptomes from cells in situ with 
spatial location information retained. 

FIGURE 3: DEVELOPMENT OF SINGLE-CELL RNA SEQUENCING 
TECHNOLOGY. 
The direction of progress has seen, (A) an increase in the number of analysed cells, (B) a radical 
reduction in cost per cell, and (C) an increase in the number of published papers. (D) The 
technological landmarks that have occurred to increase the number of cells and quality of 
information gathered from single cells. Image Credit: Jovic, et al.8

https://www.10xgenomics.com/instruments/chromium-family?utm_medium=search&utm_medium=search&utm_source=google&utm_source=google&utm_campaign=sem-goog-2022-website-page-ra_g-chromium-brand-emea&utm_campaign=sem-goog-2022-website-page-ra_g-chromium-brand-apac&useroffertype=website-page&useroffertype=website-page&userresearcharea=ra_g&userresearcharea=ra_g&userregion=emea&userregion=apac&userrecipient=customer&userrecipient=customer&usercampaignid=7011P000001mDXwQAM&usercampaignid=7011P000001mDXlQAM&gad=1&gclid=CjwKCAjwloynBhBbEiwAGY25dC9vOEa2aDbXvnk8eJgRMIAjuCijx-RF2mulvOzKwTT-t-DhTw1ZgRoCnzAQAvD_BwE
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This will be covered in further detail in the following section covering spatial technology. 

The other direction still involves isolated cells, but is diversifying away from the transcriptome to enable multiomics 
assessments. This could involve sequencing of the genome, proteome, epigenome, metabolome or multiple of these 
together26,27. 

Overall, while single-cell sequencing is now almost 15 years old and is maturing into a lab staple, it is still undergoing 
substantial  development each year. We spoke to some experts in the field about what it has been like to witness this 
technological development from the early days of single-cell to now. 

FLG: We would like to get your 
perspective as someone who lived 
through this evolution of the field. 
What was it like?

Luciano: It's been remarkable to 
witness the evolution. The first single-cell 
experiment was a sequencing of one 
cell in 2009. That marked the inception. 
Since then, the field has gradually 
progressed, moving from sequencing 
one cell to ten, then a hundred cells. 
With FACS sorting, it became possible to 
isolate a small number of cells for copy 
number profiling, followed by RNA-seq 
and similar analyses.

Then there were two consecutive papers 
from Harvard and MIT. Interestingly, the 
researchers from these institutions were 

essentially thinking along the same lines, 
even though they were just meters apart. 
They each introduced variations of the 
same microfluidic technology, both of 
which became pivotal for subsequent 
developments. 

These two papers laid the groundwork 
for what we now recognize as 
microfluidic devices and the Chromium 
Controller. Once the Chromium 
Controller was introduced, we saw an 
increase from thousands to hundreds 
of thousands of cells. Subsequently, as 
combinatorial barcoding techniques 
were adopted (e.g., SPLiT-Seq, now core 
in PARSE Bio tech), the count reached 
into the millions. It's remarkable that the 
technology advanced from a single cell 
to over a million in just 10 years.

LUCIANO MARTELOTTO 
Associate Professor & Lab 

Head, Single-Cell and Spatial-
Omics Laboratory 

University of Adelaide, 
Australia

FIGURE 4. TIMELINE OF SINGLE-CELL TECHNOLOGICAL DEVELOPMENTS.
Technologies are displayed by original publication date and the typical throughput. Colours/shapes indicate the type of mRNA that the technology 
sequences. Significant advances are indicated by dotted borders. Image Credit: Zhang, et al. 28
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FLG: Since you have been part of 
the transcriptomics core for almost 
20 years, what has it been like to 
go through the evolution of these 
technologies?

Linda: It's been really exciting, especially 
coming in as just an undergraduate 
without significant research experience 
and seeing the early days of microarrays. 
I was originally doing some of the 
old Clontech arrays, having to use 
radioactive labelling and things like that. 
Then seeing the Affymetrix system come 
out and what could be generated from 
that. As a naive kid, you're looking at it 
thinking - ‘wow, we are at the pinnacle 
of understanding here, this is amazing, 
where do we even go from here?’ 

Then, within about five to seven years, 
I'm being told that microarrays are 
going to go the way of the dodo, 
and sequencing is going to take over 
everything. At the beginning, I was 
thinking, the data analysis is complex, 
it's so expensive, there's no way this is 
going to happen. I had no idea why they 
were anticipating that within three years 
we're never going to do another array. 
Ultimately, of course they were right, but 
it took a lot longer than 3 years. It was 
much closer to a decade.  

Since then, I’ve seen a lot of people 
get excited about new technologies 
and think that ‘this is the pinnacle of 
everything,’ just like I did with arrays. 
Some people jump into it because 
that's the new thing. In the past, we 
had a lot of people come in and ask for 
sequencing services and we would say, 
‘why do you need to do sequencing when 
a microarray will give you the same 
information cheaper and easier?’ The 
response - ‘because that's what people 
are doing now.’ There wasn't a real 
scientific need for it. 

Then it got to the point where 
sequencing was cheaper, and it did 
not require any a priori knowledge, 
meaning we could find novel 
transcripts. Once costs were down 
and analysis methods improved, we 
saw the transition. Then the next 
thing comes out, single-cell, and we keep 
making these giant leaps in resolution 
of what we can analyze. It's always the 
same pattern; new technology comes 
out, certain people jump all over it, 
because it's the new technology, but they 
don't understand why. That's where we 
[the core team] need to be… to push the 
‘why’, so that the right decision is made.

Given how quickly the field is advancing, 
it's fun to think about what we are still 
missing. It is feasible that what we're 
still missing at this single-cell resolution, 
we're going to resolve in three to four 
years. I think it's an amazingly exciting 
time in molecular biology, genetics, and 
medicine. And it's been a fun ride for the 
last 20 years, I will definitely say.

FLG: Spatial methods are clearly 
developing rapidly, but what about 
single-cell, is it still maturing? Do you 
think it's still evolving just as quickly? 

Linda: I think it's still evolving just 
as quickly. I think there's a lot more 
that can be done to enable a lot more 
studies. We always see the limitations 
of having low cell viability, and clients 
still come in and say, ‘but, can I just pick 
out the live cells?’ Eventually, I believe 
that there's going to be a method where 
we incorporate this cell sorting into the 
processing, so you are only pulling out 
the live cells. We're starting to see that 
with some of these micro-fluidics assays 
that allow for image-based sorting, or 
these new AI based tools looking at cell 
morphology to sort out live cells.  u

LINDA D. ORZOLEK 
Director, Single Cell & 
Transcriptomics Core 

Johns Hopkins University

“I THINK IT'S 
AN AMAZINGLY 
EXCITING TIME 

IN MOLECULAR 
BIOLOGY, 

GENETICS, AND 
MEDICINE. AND 
IT'S BEEN A FUN 

RIDE FOR THE 
LAST 20 YEARS, I 
WILL DEFINITELY 

SAY."
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The advantage is that these methods are gentler on the cells, 
preventing activation or other transcriptional changes that 
may bias data.  We have people who have a 1 in a 1000, or 
a 1 in 10,000 cell type as their target, and those cells tend 
to get lost amongst everything. So, being able to find a way 
to really enrich for those particular cells, I think all of that is 
still there for development.

Then you couple it with the price reductions that need to 
continue, so that we can do these much more extensive 
studies, e.g., time courses, longitudinal studies. I was 

listening to a presentation earlier this week, talking about 
retina regeneration, and they were saying that they have 
done time points during development almost every day, 
and what a difference it made, and that they would miss 
the complete picture if they weren't able to do all those time 
points. But lot of people can't – they have to pick and choose 
very carefully what they can do, because of funding. As all 
the prices come down, it enables larger, more extensive 
projects. So, all of that is still developing, right alongside 
spatial.

2023: A spatial odyssey
Compared to single-cell sequencing, spatial 
transcriptomics has not reached the same 
level of maturity, despite a similar timeframe 
of development (see Figure 5). This is partly 
because current spatial technologies can be 
divided into four different categories, all of 
which are being developed. These include:

1.	 Microdissection methods – this ‘brute-
force’ method involves dissecting out small 
regions of interest and sequencing them 
traditionally. This limits the size of area one 
can investigate. Methods include: LCM29, 
TIVA30, NICHE-Seq31 and, most recently, 
ProximID32.

2.	 In situ Hybridisation (ISH) methods – 
these methods visualise RNA directly in their 
environment through binding probes and 
fluorescent markers to RNA. A historical 
challenge has been the limitation on the 
number of markers in one experiment due 
to spectral overlap.

3.	 In situ Sequencing (ISS) methods – these 
methods perform RNA sequencing inside 
the cell while it remains in tissue context. 
Due to the spatial limits of the cell, there is a 
limit to the number of transcripts that can be 
discriminated simultaneously.

4.	 In situ Capture (ISC) methods – these 
methods capture transcripts in situ using 
barcodes, which historically limits RNA 
capture efficiency.

LOOKING INTO THE PAST. SINGLE-CELL AND SPATIAL TRANSCRIPTOMICS: A HISTORY

FIGURE 5: TIMELINE OF THE KEY DEVELOPMENTS IN SPATIAL 
TRANSCRIPTOMIC TECHNOLOGIES. 
The principles of several exemplar technologies are demonstrated including: 
(A)  ProximID, (B) seqFISH+, (C) Stereo-seq, (D) sci-Space, (E) STARmap, (F) 10x 
Genomics Visium; (G) Slide-seqV2 and (H) Seq-Scope. Image Credit: Zhang, et al. 33
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Figure 6 displays a timeline of landmark technologies within these four categories of methods. We will review some of 
the major advances in ISH, ISS and ISC methodologies. 

The first RNA ISH was performed in the early 1990s and what followed was a series of advances that improved the 
resolution. In 1998, the first single molecule FISH34 (smFISH) allowed the first subcellular RNA visualisation with singly 
labelled oligonucleotide probes. This 1998 method suffered technical issues, which meant the first reliable smFISH 
was published in 200835. This was followed in 2011/12 by the first RNAscope, which used a novel ‘Z’ probe to bind to 
RNA transcripts. Later in 2014, seqFISH36, was published, which used sequential hybridisations to expand the number 
of targets and in 2015, MERFISH37, improved on the time and effort of seqFISH using multiple readout hybridisations. 
SeqFISH+38 and MERFISH+39, both published in 2019, mark the current pinnacle of ISH transcript detection allowing 
for ~10,000 genes to be visualised with confocal microscopy. The historical limitation on the number of markers is 
overcome using multiple bindings sites and multiple rounds of binding.

For in situ sequencing, the first approach, called In Situ Sequencing40 (ISS) was published in 2013 and used padlock 
probes to sequence targeted genes in tissue sections. This approach achieved subcellular resolution but was limited to 
~100 targets. The 2019 release of HybISS41 saw radical improvement of the target limit using sequencing-by-hybridisation 
instead of by ligation. ISS is continually seeing improvement with this year’s publication of Improved ISS42 (IISS) using 
new probing, barcoding and imaging for better gene profiling. Other methods of in situ sequencing including FISSEQ43, 
published in 2015, use fluorescence methods to capture genome-wide RNA in an unbiased manner, but, again, do not 
have the capacity for whole transcriptome level sequencing. More recent methods such as STARmap44 use padlocks 
without reverse transcription and DNA nanoballs to sequence an expanded range of targets. 

LOOKING INTO THE PAST. SINGLE-CELL AND SPATIAL TRANSCRIPTOMICS: A HISTORY

FIGURE 6. TIMELINE OF MAJOR LANDMARKS IN SPATIAL GENOMIC METHODS.
Methodologies are categorised based on type (red, in situ sequencing-based method; green, in situ hybridization based method; orange: 
micro-dissection based method; purple: in situ spatial barcoding based method). In situ spatial barcoding approaches are quantified by spatial 
resolution and by Field of View (size of circle). Dashed box indicates single-cell/nuclei resolution. Image Credit: Cheng, et al. 45
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The most recent and most rapidly advancing set of approaches are 
the in situ capture/barcoding methods. These methods capture 
transcripts in situ that are then sequenced ex-situ, which avoids 
the limits of visualising and sequencing targets in situ. However, 
the challenge for this technology is RNA capture efficiency, 
particularly with the drive to achieve higher resolution with 
smaller capture areas. Spatial transcriptomics46 (ST) was the first 
of these approaches published in 2016, which was later released 
commercially as 10x Genomics Visium. It uses barcoded RT primers printed onto glass slides for RNA capture, but 
initial resolution was 100 micrometres, improving to 55 micrometres with the Visium. Slide-seqV1 and V247,48 radically 
improved the resolution to 10 micrometres and use barcoded beads on a slide. 

High-definition spatial transcriptomics49 (HDST) was released shortly after Slide-seqV1 using smaller beads, enabling 
an impressive 2 micrometre resolution. Very recent techniques such as Seq-Scope50, Pixel-seq51 and Stereo-seq52 
represent the current cutting edge, having refined spatial resolution to under 1 micrometer. Stereo-seq used DNA 
nanoballs to achieve this and is the first technology to have achieved subcellular resolution and a centimetre-scale 
field of view. Finally, techniques such as DBiT-seq53 and sci-Space54 differ in that they use deterministic barcoding, and 
the latter method allows for large fields of view at the cost of spatial resolution.

While barcoding methods seem promising and the current direction of future progress, especially given the 
impressive spatial resolution, RNA capture efficiency is still poor compared to isolating the cells and sequencing 
them with single-cell sequencing technology. Brand new techniques, such as Slide-tags55, can address this issue. 
Slide-tags first barcodes nuclei within tissues with a high spatial resolution. These nuclei can then be dissociated and 
isolated, meaning the mature single-nuclei technology can be used to sequence them. However, the nuclei still have 
the spatial barcodes and can be mapped back to their tissue context. We caught up with first author, Dr. Andrew 
Russell, to hear more about Slide-tags.

LOOKING INTO THE PAST. SINGLE-CELL AND SPATIAL TRANSCRIPTOMICS: A HISTORY

“WHILE BARCODING 
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THE DIRECTION OF 
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THE CELLS AND 
SEQUENCING THEM 
WITH SINGLE-
CELL SEQUENCING 
TECHNOLOGY."
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FLG: Can you describe how Slide-tags works and what 
gap it is addressing in the field?

Andrew: For the last decade or more, we've seen 
the development of a vast repertoire of single-
cell sequencing technologies. These are mainly 
for transcriptomic measurements, but have also 
expanded to DNA, proteomes and other modalities. 
These single-cell technologies are really advanced 
and, combined with some great analysis tools, and 
commercial offerings, they allow us to do experiments 
with millions of cells. And that really opens us up to 
new biology. On the other hand, when we dissociate 
tissues into single cells with these technologies, we 
lose the spatial context. 

This is what the field has been trying to address 
in more recent years. We have this emerging 
branch of spatial sequencing tools. Namely, spatial 
transcriptomics tools, such as Slide-seq from our lab 
and other academic and commercial platforms, allow 
us to measure macromolecules in a spatial context. But 
they either lose resolution by having to capture these 
molecules in pixel-based measurements, or they use 
probe-based methods which need segmentation and 
aren’t transcriptome-wide, so they're not perfect either. 
Hence, Slide-tags solves this issue between spatially 
resolved sequencing technologies and single-cell 
sequencing technologies by essentially allowing you to 
place single-cell transcriptomes back to their original 
spatial location within a tissue. 

We use the spatially barcoded bead arrays that 
we've largely developed in the lab for Slide-seq and 

Slide-DNA-seq. Rather than capturing molecules 
onto those spatially barcoded bead arrays as 
we would with those technologies, we actually 
mobilise these spatial barcodes, we cleave them, 
and they diffuse into tissues. Then, in these fresh 
frozen tissues, they associate with nuclei, in a 
very high spatial resolution manner. We can then 
isolate these spatially-barcoded nuclei and profile 
them with established single-cell sequencing 
technologies. This means we can both capture the 
transcriptome of those single cells and the spatial 
barcodes become associated with that single 
nucleus. That then allows us to both profile the 
transcriptome, but also use that collection of spatial 
barcodes to relocate the cell in that tissue.
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FLG: And what is the spatial resolution like when you 
map the nuclei back to spatial context?

Andrew: We've actually done some recent analysis of 
this. In our paper, we address this in a few different ways. 
The first thing we did was we checked to see whether we 
were recapitulating small-scale spatial structures that we 
saw in a mouse hippocampus, and we found that it was 
recapitulating the image very faithfully. Secondly, we also 
tried to measure the accuracy of the placement with the 
standard error of the spatial barcode distribution of each 
nucleus. We found this to be 3.5 microns in both x and 
y. This is quite exciting because this is approximately the 
size of a nucleus itself. Hence, it makes sense that the 
accuracy of our spatial placement can't be any better than 
the diameter of the nucleus.

FLG: In summary, Slide-tags allows you to take advantage 
of how far ahead single-cell sequencing technology is, 
while maintaining spatial context, is that right?

Andrew: Yeah, exactly. And back to what I said earlier, 
we have a lot of different tools to sequence single cells. 
We think that because this technology is essentially 
tagging the nuclei with oligonucleotides, any of these 
sequencing technologies could be applied downstream 
of slide tags. So, I think there's two main points. 

One is that when we're making these spatial 
technologies, and slide-DNA-seq is an example of that, 
we have to do a lot of work to effectively measure a 
new macromolecule in space. But now, with Slide-
tags, we could just take that tagged nucleus and we 
could import it into this whole stream of hundreds of 
technologies that we now have for single-cell resolved 
measurements. 

The second is that we're still really 
trying to make the most of these spatial 
measurements in terms of analysis and we 
have a vast repertoire of single-cell analysis 
tools. Hence, it's not just that Slide-tags makes 
the measurement of new macromolecules 
easier at a single cell resolution, but it also 
makes the overall analysis much easier 
because you don't need to develop a new 
bespoke analysis for these new tools. 

FLG: Are there any specific scientific 
questions or problems that this technology 
could be applied to?

Andrew: Yes. What I'm most excited about 
is the ability to really import this technology 
into multiomics measurements of single 

cells. It's something we struggled to do with these 
existing, spatially resolved sequencing technologies. 
We have many tools now for measuring the genome 
and transcriptome in single cells. This offers a platform 
to do this spatially, which we show in the paper, and 
we haven't really been able to effectively do this. I 
think these linked measurements between different 
modalities allow us to look at options for temporal 
dynamics. When you can measure open chromatin and 
transcriptomes simultaneously in the same single cell, 
you can get a really good dynamic readout. This has 
been done by others, but we think we can do this in a 
spatial context now. 

Also, if you can measure, say, mutations in a single cell, 
and the effect on that transcriptome, you get a sense 
of these genotype/phenotype relationships, which are 
very important in cancer research, but maybe also 
important in neurodegeneration and also in aging-
associated disease research in general. However, 
I think that the exciting thing about developing a 
technology is that you have these ideas about how it 
can be applied and where it can be useful, but then, 
amazing collaborators and scientists really discover 
them for you. I know that people are going to do 
exciting stuff that we haven’t even thought about when 
we started developing this technology.

Now that we’ve caught up on the history of single-
cell and spatial omics, we can see that progress 
towards larger capacities and higher resolutions 
has been fairly constant. Let’s move on to chapter 
2 to look at the commercial developments in the 
last two years to get a better picture of the latest 
improvements in single-cell and spatial technology.

The Spatial and Single-Cell Analysis Playbook 14



The Spatial and Single-Cell Analysis Playbook 15

Chapter 1 references
1.	 Li, X. & Wang, C.-Y. From bulk, single-cell to spatial RNA sequencing. 

International Journal of Oral Science 13, 36 (2021).

2.	 Method of the Year 2013. Nature Methods 11, 1-1 (2014).

3.	 Pan, Y., Cao, W., Mu, Y. & Zhu, Q. Microfluidics facilitates the 
development of single-cell RNA sequencing. Biosensors 12, 450 (2022).

4.	 Method of the Year 2019: Single-cell multimodal omics. Nature 
Methods 17, 1-1 (2020).

5.	 Method of the Year 2020: spatially resolved transcriptomics. Nature 
Methods 18, 1-1 (2021).

6.	 Quake, S.R. A decade of molecular cell atlases. Trends in Genetics 38, 
805-810 (2022).

7.	 Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. 
Nature Methods 6, 377-382 (2009).

8.	 Jovic, D. et al. Single-cell RNA sequencing technologies and 
applications: A brief overview. Clinical and Translational Medicine 12, 
e694 (2022).

9.	 Carangelo, G., Magi, A. & Semeraro, R. From multitude to singularity: 
An up-to-date overview of scRNA-seq data generation and analysis. 
Frontiers in Genetics 13(2022).

10.	 Wang, S. et al. The evolution of single-cell RNA sequencing technology 
and application: progress and perspectives. Int J Mol Sci 24(2023).

11.	 Islam, S. et al. Characterization of the single-cell transcriptional 
landscape by highly multiplex RNA-seq. Genome research 21, 1160-
1167 (2011).

12.	 DeLaughter, D.M. The use of the Fluidigm C1 for RNA expression 
analyses of single cells. Current protocols in molecular biology 122, e55 
(2018).

13.	 Brennecke, P. et al. Accounting for technical noise in single-cell RNA-
seq experiments. Nature Methods 10, 1093-1095 (2013).

14.	 Jaitin, D.A. et al. Massively parallel single-cell RNA-seq for marker-free 
decomposition of tissues into cell types. Science 343, 776-9 (2014).

15.	 Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics 
applied to embryonic stem cells. Cell 161, 1187-1201 (2015).

16.	 Macosko, E.Z. et al. Highly parallel genome-wide expression profiling 
of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).

17.	 Cao, J. et al. Comprehensive single-cell transcriptional profiling of a 
multicellular organism. Science 357, 661-667 (2017).

18.	 Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. 
Science 370, eaba7612 (2020).

19.	 Rosenberg, A.B. et al. Single-cell profiling of the developing mouse 
brain and spinal cord with split-pool barcoding. Science 360, 176-182 
(2018).

20.	 Kharchenko, P.V. The triumphs and limitations of computational 
methods for scRNA-seq. Nature Methods 18, 723-732 (2021).

21.	 Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome 
profiling in single cells. Nature methods 10, 1096-1098 (2013).

22.	 Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of 
RNA and individual circulating tumor cells. Nature biotechnology 30, 
777-782 (2012).

23.	 Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-
cell RNA-Seq. Genome biology 17, 1-7 (2016).

24.	 Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell 
RNA-Seq by multiplexed linear amplification. Cell reports 2, 666-673 
(2012).

25.	 Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and 
isoform resolution using Smart-seq3. Nature Biotechnology 38, 708-
714 (2020).

26.	 Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and 
applications for single-cell and spatial multi-omics. Nature Reviews 
Genetics, 1-22 (2023).

27.	 Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and 
applications of single-cell multi-omics. Nature Reviews Molecular Cell 
Biology, 1-19 (2023).

28.	 Zhang, Y., Huang, Y., Hu, L. & Cheng, T. New insights into human 
hematopoietic stem and progenitor cells via single-cell omics. Stem 
Cell Reviews and Reports 18, 1322-1336 (2022).

29.	 Emmert-Buck, M.R. et al. Laser capture microdissection. Science 274, 
998-1001 (1996).

30.	 Lovatt, D. et al. Transcriptome in vivo analysis (TIVA) of spatially 
defined single cells in live tissue. Nat Methods 11, 190-6 (2014).

31.	 Medaglia, C. et al. Spatial reconstruction of immune niches by 
combining photoactivatable reporters and scRNA-seq. Science 358, 
1622-1626 (2017).

32.	 Boisset, J.C. et al. Mapping the physical network of cellular interactions. 
Nat Methods 15, 547-553 (2018).

33.	 Zhang, L. et al. Clinical and translational values of spatial 
transcriptomics. Signal Transduction and Targeted Therapy 7, 111 (2022).

34.	 Femino, A.M., Fay, F.S., Fogarty, K. & Singer, R.H. Visualization of single 
RNA transcripts in situ. Science 280, 585-590 (1998).

35.	 Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. 
Imaging individual mRNA molecules using multiple singly labeled 
probes. Nat Methods 5, 877-9 (2008).

36.	 Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in 
situ RNA profiling by sequential hybridization. Nat Methods 11, 360-1 
(2014).

37.	 Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S. & Zhuang, X. RNA imaging. 
Spatially resolved, highly multiplexed RNA profiling in single cells. 
Science 348, aaa6090 (2015).

38.	 Eng, C.L. et al. Transcriptome-scale super-resolved imaging in tissues 
by RNA seqFISH. Nature 568, 235-239 (2019).

39.	 Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome 
profiling by MERFISH reveals subcellular RNA compartmentalization 
and cell cycle-dependent gene expression. Proc Natl Acad Sci U S A 116, 
19490-19499 (2019).

40.	 Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and 
cells. Nat Methods 10, 857-60 (2013).

41.	 Gyllborg, D. et al. Hybridization-based in situ sequencing (HybISS) for 
spatially resolved transcriptomics in human and mouse brain tissue. 
Nucleic acids research 48, e112-e112 (2020).

42.	 Tang, X. et al. Improved in situ sequencing for high-resolution targeted 
spatial transcriptomic analysis in tissue sections. Journal of Genetics 
and Genomics (2023).

43.	 Lee, J.H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene 
expression profiling in intact cells and tissues. Nature Protocols 10, 
442-458 (2015).

44.	 Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell 
transcriptional states. Science 361(2018).

45.	 Cheng, M. et al. Spatially resolved transcriptomics: A comprehensive 
review of their technological advances, applications, and challenges. 
Journal of Genetics and Genomics (2023).

46.	 Ståhl, P.L. et al. Visualization and analysis of gene expression in tissue 
sections by spatial transcriptomics. Science 353, 78-82 (2016).

47.	 Rodriques, S.G. et al. Slide-seq: A scalable technology for measuring 
genome-wide expression at high spatial resolution. Science 363, 1463-
1467 (2019).

48.	 Stickels, R.R. et al. Highly sensitive spatial transcriptomics at near-
cellular resolution with Slide-seqV2. Nat Biotechnol 39, 313-319 (2021).

49.	 Vickovic, S. et al. High-definition spatial transcriptomics for in situ 
tissue profiling. Nat Methods 16, 987-990 (2019).

50.	 Cho, C.-S. et al. Microscopic examination of spatial transcriptome using 
Seq-Scope. Cell 184, 3559-3572. e22 (2021).

51.	 Fu, X. et al. Polony gels enable amplifiable DNA stamping and spatial 
transcriptomics of chronic pain. Cell 185, 4621-4633. e17 (2022).

52.	 Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse 
organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777-
1792. e21 (2022).

53.	 Liu, Y., Enninful, A., Deng, Y. & Fan, R. Spatial transcriptome sequencing 
of FFPE tissues at the cellular level. bioRxiv, 2020.10. 13.338475 (2020).

54.	 Srivatsan, S.R. et al. Embryo-scale, single-cell spatial transcriptomics. 
Science 373, 111-117 (2021).

55.	 Russell, A.J.C. et al. Slide-tags: scalable, single-nucleus barcoding for 
multi-modal spatial genomics. bioRxiv, 2023.04.01.535228 (2023).

LOOKING INTO THE PAST. SINGLE-CELL AND SPATIAL TRANSCRIPTOMICS: A HISTORY



The Spatial and Single-Cell Analysis Playbook 16

CHAPTER 2

WHAT’S NEW. AN OVERVIEW OF THE LATEST 
COMMERCIAL TECHNOLOGY DEVELOPMENTS

AS SUMMARISED IN CHAPTER 1, SINGLE-CELL AND SPATIAL ANALYSIS 
HAS DRASTICALLY IMPROVED OVER THE LAST DECADE. EACH PASSING 

YEAR SEES FURTHER EXPANSION IN THE NUMBER OF COMMERCIAL 
INSTRUMENTS AVAILABLE AND THE CAPACITIES OF THESE INSTRUMENTS. 

For researchers, large-scale single-cell spatial multiomics is the most common short-term goal. The past two years 
have seen commercial advancements in spatial multiomics methods as well as increases in capacity, multiplexing and 
resolution to make this a reality. 

Despite its maturity, single-cell sequencing hasn’t been static and has seen expansion in its multiomics capacity, as well as 
potentially game-changing instrument-free approaches  that could make sequencing more accessible and highly scalable. 

In the following sections we will highlight a selection of commercial advances that have happened in the past two 
years, providing an overview of the directions of progress. This list is not exhaustive and was compiled in August 2023.

MULTIOMICS CAPABILITIES
SPATIAL CO-DETECTION OF RNA AND PROTEIN IN ONE EXPERIMENT
Some of the most established companies in the spatial transcriptomic space have made the same move in the last 
24 months; to diversify their core spatial transcriptomic products to co-visualize proteins within a single experiment, 
making true multiomics spatial platforms. Some key examples include:

10x Genomics Visium Cyt Assist™ - first launched in 2022 to improve sample preparation, has now 
released a whole transcriptome and 31-plex protein assay as of May 2023. This allows the study of 
protein and RNA in a single tissue section as well as H&E/IF staining for tissue morphology.

Nanostring CosMx™ SMI - launched in December 2022 as the highest plex in situ imager with 
1000-plex RNAs and 64-plex proteins analysed in the same tissue at subcellular resolution. This 
joins their other products including the first cloud-based spatial data analysis resource, AtoMx™ and 
their established GeoMx™ that has broader protein and RNA capability with low resolution.

Vizgen MERSCOPE™ - launched a protein co-detection kit in September 2022, allowing users to take 
full advantage of the subcellular hi-plex nature of the instrument while detecting up to five proteins. 
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In 2023, Miltenyi Biotec introduced RNAsky™ technology which integrates spatial RNA detection with 
multiplexed protein in the same experiment on the MACSima™ Spatial Biology Imaging Platform. 
The automated multiomics workflow can be analyzed with MACS® iQ View image software or other 
bioinformatics pipelines. 

Akoya Bioscience’s PhenoCycler®-Fusion was released in January 2022 and offers a high throughput 
workflow at sub-cellular resolution for 100+ markers, either RNA or protein biomarkers. It is one of 
the fastest single-cell spatial biology solution, able to map a million cells in 10 minutes.

ACD Biotechne and Standard Biotools have created a workflow (May 2023) to 
combine the 12-plex RNAscope™ assay with the 40-plus protein Imaging Mass 
Cytometry™ assay, to create RNA and protein multiomics outputs.

A DIVERSIFICATION OF MULTIOMICS SINGLE-CELL SEQUENCING
Multimodal sequencing capacity has also diversified on the single-cell sequencing front, with new specific omics 
available to sequence such as:

BioSkryb Genomics’ ResolveOME™ kit allows the near-complete summary of the genome and mRNA 
transcriptome at single cell resolution. With their associated BaseJumper™ data analysis software, 
this setup creates a unified workflow for DNA and RNA interrogation.

Mission Bio released Tapestri® v3 in May 2023, with DNA as its primary analyte. It allows the analysis of 
the genotype of a cell plus a variety of other phenotypic data such as CNVs, SNVs or proteins. The new v3 
allows up to four times more cells captured per sample, which increases the ability to detect rare cells.

Singleron’s PromoScope™ kit, released in November 2022, allows the simultaneous quantification of the 
whole transcriptome, as well as protein glycosylation at the single-cell level. Relying on their SCOPE-
chip® technology, this is the first kit to quantify protein modifications alongside transcriptomics.

WHAT’S NEW. AN OVERVIEW OF THE LATEST COMMERCIAL TECHNOLOGY DEVELOPMENTS

SPATIAL METHODS GET SOPHISTICATED
SPATIAL TRANSCRIPTOMICS – MORE TARGETS, MORE RESOLUTION
New spatial transcriptomic tools are increasing the speed, capacity and scope of this technique. This provides 
researchers with a variety of options to meet their spatial needs. Whether they provide access to more cells, more 
targets to produce a higher-plex assay or a high resolution to pinpoint tiny molecules, here we highlight a few of the 
mRNA visualization technologies released in the last 24 months that expand the horizons of spatial biology:

10x Genomics released the Xenium™ platform in December 2022, which is an in situ sequencing 
platform to compliment the in situ capture platform - Visium™. ‘The Xenium™ can sequence the 
transcripts of 1000s of genes in a high throughput non-destructive manner, which allows 
proteomics and histopathology to be conducted on the same slide.

Vizgen MERSCOPE™ was released in January 2022 and commands an impressive capacity to 
visualize 10’000s of RNA in situ with sub-cellular resolution and high sensitivity.
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ACD Biotechne’s RNAscope™ recently passed a milestone of 40,000 probes (currently over 44,000) 
in its probe library, making it the broadest in situ technology with high sensitivity.

Curio Bioscience released the Curio Seeker in February 2023, based off of Slide-seq v2 technology, 
which enables large scale whole transcriptome spatial tissue map at single-cell resolution. This in situ 
barcoding approach does not require any specific hardware but simply requires the mounting of your 
tissue on the Curio Seeker Tile. It boasts a 10 micron resolution and no gaps between spots.

The Molecular Cartography™ platform, released by Resolve Biosciences in June 2022 is a multi-
analyte, highly multiplexed spatial solution to visualise 100’s of genes with subcellular resolution in 
a single run. The approach uses high-quality optics, which provides the highest resolution and can 
assess 100’s of genes at once. Resolve have stated that future solutions will incorporate additional 
data layers of analysis (DNA, Protein and Metabolome).

The GenePS system was released by Spatial Genomics in May 2023 and is an automated instrument 
with capacity to panel over 1,000 genes at exceptional resolution using seqFISH technology. The 
analysis suite allows easy visualization of molecules from the tissue to the subcellular level as well 
as multiomics capacity. 

SPATIAL PROTEOMICS SOLUTIONS ARE COMING IN FAST
While spatial proteomics still lags behind spatial transcriptomics for number, variety and capacity of solutions, 
advances were still aplenty in the last 24 months. Highlights include:

MACSima Imaging System was the first platform to publish more than 100 proteomic markers on a 
single tissue sample, in a single experiment, with off-the-shelf primary antibodies. In 2022, Miltenyi 
Biotec launched MACS® iQ View image analysis software which allows researchers to easily analyze 
large complex data stacks. In 2023 Miltenyi Biotec released a 61-marker REAscreenTM IO Plate and 
custom REAscreen plates for added automation.

Navinci Diagnostics' Naviniflex™ launched the Triflex Cell (November 2022) and Tissue (January 
2023) solutions, allowing the visualization of protein-protein interactions and post-translation 
modifications, revealing the hidden interactions of proteins. 

With the launch of Spyre™ antibody panel kits and the HORIZON™ analysis software (in March 
2023), Lunaphore’s Comet™ became the first end-end spatial proteomic solution able to visualize up 
to 40 markers on one tissue sample in under a day. The plex-capacity is essentially unlimited, as 
tissue can be re-run with a new panel of markers.  

Canopy Biosciences® launched CellScape™ in March 2022, a benchtop imaging system using 
ChipCytometry™ technology. It can process 4 samples at once and is technically unlimited-plex due 
to iterative staining. This presents a rapid, fully automated multiplex spatial proteomics solution.

Standard Biotools released the Hyperion™ XTi Imaging system in April 2023. Relying on the Imaging 
Mass Cytometry™ technology, it both expands the number of samples and reduces the time taken 
to perform spatial proteomics. This tool detects 40-plus biomarkers with no autofluorescence 
interference. 

Pixelgen Technologies® launched the first molecular pixelation kit (June 2023) to visualize spatial 
polarization and colocalization of cell surface proteins at high multiplex in 3D.

These instruments join more established instruments such as Rarecyte’s Orion™, and Ionpath’s MIBIscope™ in a suite 
of spatial proteomic solutions.

WHAT’S NEW. AN OVERVIEW OF THE LATEST COMMERCIAL TECHNOLOGY DEVELOPMENTS
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SINGLE-CELL SEQUENCING 
STILL SEES IMPROVEMENT

WHAT’S NEW. AN OVERVIEW OF THE LATEST COMMERCIAL TECHNOLOGY DEVELOPMENTS

SINGLE-CELL IMPROVEMENT  – EVEN HIGHER THROUGHPUT AND FULL-LENGTH TRANSCRIPTOME
As shown in Chapter 1, the throughput of single-cell methods is growing exponentially. Even in the last year, speed, 
throughput, long-read capacity and consistency have all been improved for established and new instruments, keeping the 
wheels of progress turning. Some examples include:

BD Biosciences released the BD Rhapsody™ HT Xpress System in February 2023, which makes million-cell 
studies possible with over 320,000 cells per cartridge and with up to an 80% capture rate. This allows cell 
capture and barcoding with extremely high throughput. This joins the FACSDiscover S8™ Cell Sorter, which 
was released in May 2023 and allows cell sorting based on imaging the cells, and the FACSDuet™, launched 
in July 2023, which automates flow cytometry to automate the entire sample preparation process.

For brand new instruments, Singular Genomics have recently released the G4 sequencer in 2022, one of 
the most powerful benchtop sequencers available. With the new Max Read™ kit released in February 
2023, the instrument now has the power to sequence up to 3.2 billion reads a day. 

Pacific Biosciences launched their MAS-Seq kit for single-cell expression analysis in October 2022. It 
leverages 10x Genomics’ single-cell technology with PacBio’s HIFI technology for long-read RNA 
sequencing, to allow researchers to assess novel isoforms and the additional value of long read 
sequencing in single cells.

Takara presented the SMART-Seq® Pro kit in October 2021, which can perform full-length 
transcriptome sequencing on single cells isolated with their ICELL8® single-cell system, providing an 
automated end-to-end solution for sensitive transcriptomic analysis.

Singleron released NEO and Python Junior instruments in June 2023, which are portable 
instruments for library processing and tissue dissociation respectively. The instruments allow half a 
million cells in one run, and were designed with standardization and automation in mind.

SCALABLE AND COST-EFFECTIVE INSTRUMENT-FREE APPROACHES
To make single-cell sequencing accessible to any lab is a lofty goal for the research world. In progress towards 
this goal, the cost of performing a single-cell experiment has rapidly fallen over the last few years, with companies 
increasing the throughput and capacity of their instruments (see above). However, the inability to initially invest in the 
instruments leaves many labs unable to participate in the single-cell revolution. This is the space that the following 
companies have innovated in by supplying instrument-free single-cell solutions.

Parse Biosciences released version 2 of Evercode™ back in August 2022 (following the release of version 
1 in February 2021). This new version is more sensitive and robust, and by using the cell or nucleus as 
the reaction vessel, no hardware is needed, meaning an initial expensive hardware purchase is avoided. 
Kits can process up to 1 million cells and Evercode™TCR allows T cell receptor profiling too.
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Fluent Biosciences also updated their PIPseq™ platform to version 4 in February 2023. With one of 
the highest cell captures (85%) and better sensitivity, the kit also offers a scalable and cost-effective 
sequencing solution, compatible with Illumina NGS sequencing instruments. The T100 kit is the first 
single tube solution with the capacity for 100,000 cells. 

Scale Biosciences presents their own technology to escape the need for cell partitioning instruments 
in single-cell sequencing, through their Scale Bio™ RNA kit (December 2022). Their product is also 
scalable, affordable and allows deep profiling of cells. The single-cell ATAC kit sets Scale Biosciences 
apart as offering instrument-free epigenomic pre-indexing.

Honeycomb Biotechnologies released HIVE CLX™ in May 2023, which has 160,000 picowells in their 
distinctive array for gentle capture of fragile cells. This allows for integration of stable sample storage 
(up to 9 months) and single-cell profiling without needing specialized instrumentation. Cells are 
captured quickly and effectively and can be stored as you go - meaning samples can be collected 
across time without batch effects. 

Despite these advances in the capacity of single-cell technologies, we still see some of the same problems for single-
cell analysis. We asked some experts in the field, who have a lot of experience in assisting others, about the common 
problems they have encountered. Furthermore, we asked what advice they had for working with difficult tissues, for 
sample prep and for deciding how many cells are appropriate for an experiment.

WHAT’S NEW. AN OVERVIEW OF THE LATEST COMMERCIAL TECHNOLOGY DEVELOPMENTS

FLG: As a previous single-cell group 
leader, and founder of the Single-Cell 
World platform, what are the most 
common problems that people have 
with single-cell technologies?

Catia: First, the sample preparation. 
People really struggle to do sample 
preparation - to get individualized cells 
in suspension with good viability. This is 
mainly because of a lack of knowledge. 
Normally when you look for a bulk 
protocol, you just do the protocol. And 
that's it. But the problem with single-cell 
is that you need happy individual cells 
in suspension, and how to get them 
changes a lot between different tissues, 
and even within the same tissue. For 
example, if there is fibrosis, necrosis, 
this will influence the tissue dissociation, 
and so people will get frustrated. 
They are not aware that they need to 
optimize a lot of things. Also, most of 
the time they don’t know what needs 
to be modified. In standard research, 
normally, you get a protocol that is 
published, and you do it. In general, it 
works without major changes. In single-
cell research this is rare.

Second, the data analysis. One of the 
major concerns for researchers is who 
will do the data analysis. It is true that 
single-cell technology companies are 
offering software that you can use to 
analyse the data produced with their 
technology. But unfortunately, the type of 
analysis that you get from these “friendly 
user” programs are not enough at the 
time of publishing in peer review journals. 
My advice is always for researchers 
to establish collaborations with data 
analysis expert groups, but this is also 
difficult to get. 

FLG: Do you have any advice for people 
working on difficult tissues, such as 
human brain?

Catia: My first advice is optimize, 
optimize, optimize. Optimize the sample 
preparation protocol. Even if you find a 
perfect protocol for that tissue type, try 
it in the lab with a small tissue piece or 
a small number of samples. Get used 
to the protocol. If working with fresh 
tissue or cryopreserved, check if you can 
get good quality cells or good quality 
nuclei. u

CATIA MOUTINHO 
Founder & Scientific Advisor 

The Single-Cell World
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If the samples are snap-frozen or frozen, this is where people 
sometimes lack the knowledge, all the cells are dead. You 
will never get live cells. This is also true for fixing in ethanol/
methanol etc. In this case, you must go straight for nuclei 
isolation. You should also perform single nuclei experiments 
when you have fresh tissues that are difficult to dissociate, 
like  brain, as you mentioned, but also fat tissue or pancreas, 
for example. You can try to get cells, but with these tissues, 
in my experience, you will get a lot of debris that then will 

result in poor quality data. Since people don't have this 
information, this can be why their experiments fail.

I would like also to mention that single-cell technology is 
moving in a way where sample preparation logistics are being 
simplified. There are already kits that allow us to preserve 
the cells and continue our experiment after some months, 
or others with which you can rescue archival material that, 
before, we couldn’t use to do single-cell or nuclei experiments.

WHAT’S NEW. AN OVERVIEW OF THE LATEST COMMERCIAL TECHNOLOGY DEVELOPMENTS

FLG: As a core director, one thing I’m 
sure you’ve been asked a lot is whether 
there is a default number of cells 
and number of samples that you'd 
recommend? 

Linda: 10,000 cells has been the 
standard number but this is still a 
relatively arbitrary number. We suggest 
500 to 1000 cells per cluster as a 
starting point to make sure that you 
have confidence. And we are seeing a 
push now to run samples in triplicate. 
It's not because people realized that we 
need biological replicates for statistical 
purposes - we always knew that - but the 
technology was too expensive. And [the 
push] happens to correspond with the 
cost coming down; all of a sudden, we 
need more replicates. And you knew it 
was always the case, but people couldn't 
do it. So, that's why things have shifted. 
We encourage triplicate where you can. 
Ultimately, we encourage the most cells 

you can afford. But there are complex 
power calculations that should be done 
to determine the real answer and most 
people don’t understand the complexities 
associated with that in the context of their 
project, so we have to look for a “starting 
point.”

And then there are different assays that 
are coming out, BioSkryb provides whole 
genome single-cell sequencing now, which 
is a plate-based method. So, you're really 
looking at 100 or so cells. Why do you 
only need 100 cells? Why is that enough 
when some people are saying that 10,000 
isn’t? Well, it captures more, hence we 
get a more complete picture within that 
single cell, so you don't need as many 
replicates of the cell to have confidence in 
what you're calling. There are still different 
ways of looking at things and approaching 
them. What the benefits of the different 
technologies are, that has to come into 
play with that answer.

LINDA D. ORZOLEK 
Director, Single Cell & 
Transcriptomics Core 

Johns Hopkins University
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WHAT’S NEW. AN OVERVIEW OF THE LATEST COMMERCIAL TECHNOLOGY DEVELOPMENTS

EDGING TOWARDS CLINICAL USE 
Ultimately, many commercial companies would like to see 
their instruments and technologies make a difference in a 
clinical setting. Several companies are incorporating fast 
turnaround speed and/or a large sample throughput to 
promote clinical use. Examples include Akoya Bioscience’s 
PhenoImager™, Rarecyte’s Orion™ and Singleron’s 
GEXscope™. But as these technologies collectively become 
cheaper and faster, many of the advanced tools are 
approaching widespread clinical utility. One example of 

a technology designed for direct clinic use is Molecular Instrument’s HCR™ RNA-CISH (released 
February 2023), which allows the spatial visualization of a single RNA target in situ in under a 6 
hour runtime, with a much reduced cost, presenting a tool that could affordably and practically be 
deployed in a clinical diagnostic setting.

More generally, due to the large amount of clinical tissue stored as Formalin Fixed Paraffin 
Embedded (FFPE) samples, which allows long term storage but reduces the quality of omics data 
available, there has been increasing demand for commercial technology to be powerful enough to 
derive biological insights from FFPE samples. Most major spatial and sequencing technologies have 
now included FFPE compatibility in their workflow. This includes Nanostring for whom the CosMx 
and GeoMx have long had FFPE compatibility and more recently 10x Genomics have released FFPE 
compatibility for their chromium sequencer in April 2022 and now Vizgen, who released a solution 
kit for FFPE tissues for MERSCOPE in December 2022. 

The valuable progress of using single-cell and spatial technologies for direct clinical applications is explored in depth in 
Chapter 6 of this report. 

In summary, single-cell and spatial technologies are expanding their capacity in terms of number of cells, number of 
samples and number of multimodal markers. Our next chapter will look at some of the large-scale projects that have 
been made possible with this enhanced technology.

“SINGLE-CELL AND SPATIAL 
TECHNOLOGIES ARE EXPANDING 
THEIR CAPACITY IN TERMS OF 
NUMBER OF CELLS, NUMBER OF 
SAMPLES AND NUMBER OF MULTI-
MODAL MARKERS."
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CHAPTER 3

SIZE MATTERS. SINGLE-CELL AND SPATIAL, 
MULTIPLEX AND MULTIOMICS

MORE CELLS, MORE SIGNALS, MORE OMICS – SINGLE-CELL AND 
SPATIAL BIOLOGY IS UNDERGOING EXPANSION. THIS CHAPTER WILL 
COVER SOME OF THE BIGGEST INITIATIVES IN SINGLE-CELL BIOLOGY 
AS WELL AS THE UNIQUE PROBLEMS THAT ARISE FROM WORKING AT 

THIS VAST SCALE. SPECIFICALLY, WE WILL COVER WAYS TO UTILISE 
SINGLE-CELL ATLASES, WAYS TO HANDLE MULTIPLEX IMAGES AND 

HOW TO INTEGRATE MULTIOMICS DATA. 

Multi-cell -  Atlasing projects using single-cell technology
As we saw in Chapters 1 and 2, a combined academic and commercial effort is producing technology capable of conducting 
single-cell experiments at huge scale. As a consequence, scientists are using this technology to profile incredible numbers of 
cells from specific tissues in the human body, creating atlases with increasingly impressive scope. 

With combinatorial indexing1, single-cell experiments are now able to process over a million cells (see Figure 1). This 
means it is becoming common place to see 100,000s of cells profiled in a single experiment, and the ability to profile 
whole tissues is open to anyone.

FIGURE 1. TIMELINE OF MAJOR SINGLE-CELL SEQUENCING TECHNOLOGIES WITH THE LEVEL OF THROUGHPUT 
OF SEQUENCED CELLS. 
The most comprehensive single-cell sequencing technologies are capable of a throughput of 100’s of 1000’s of cells. Colour indicates the different 
modality of single-cell sequencing. Image Credit: Jia, et al.2
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SINGLE-CELL CONSORTIA 
The Human Cell Atlas (HCA) initiative is a global consortium using single-cell and spatial technologies to create 
comprehensive reference maps of the human body. It has over 3,000 members across 95 countries, organised into 18 
networks targeting specific organs or systems (see this video for a ‘state of’). Figure 2 outlines the selection of tissues that 
have been profiled as part of the HCA as of the end of 2022. Since then, we have seen developments in the heart cell atlas 
(700,000 cells and nuclei)3,4, the kidney (400,000 cells and nuclei)5 and the human breast (800,000 cells)6. Of note is the single-
nuclei assessment of human post-mortem brain tissue, which sequenced over 3 million nuclei from all areas of the brain7. 
Also impressive is the new lung atlas8, which represents one of the largest efforts to combine datasets for this purpose; 49 
datasets and 2.4 million cells. This approach relied on transfer learning to effectively integrate so many datasets into one 
resource. Furthermore, a new roadmap is in place for a Human Gut Cell Atlas, which is proving difficult to map9.
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FIGURE 2. KEY ORGANS AND TISSUES FOR WHICH HEALTHY SAMPLES HAVE BEEN PROFILED AS PART OF THE 
HUMAN CELL ATLAS INITIATIVE. 
Atlases of diseased samples are presented below each tissue and colour coded by condition. Image Credit: Rood, et al.10

Nervous system
	Alzheimer's disease
	Multiple sclerosis
	1 Parkinson's disease
	Glioblastoma
	Low-grade glioma
	Neuroblastoma (metastasis)
	Bardet-Biedl syndrome
	Cerebral malformation
	COVID-19
	Influenza
	Viral encephalitis

Oral-craniofacial
	Nasopharyngeal carcinoma
	Oral squamous cell carcinoma
	COVID-19
	Periodontitis

Skin
	Atopic dermatitis
	Psoriasis
	Scleroderma
	Melanoma

Heart
	Atherosclerosis
	Cardiomyopathy
	Hypertension
	Myocarditis
	Hypoplastic left heart syndrome
	COVID-19

Blood and immune
	Alzheimer's disease
	Lupus
	Multiple sclerosis
	Rheumatoid arthritis
	Acute lymphoblastic leukemia
	Acute myeloid leukemia
	Chronic lymphocytic leukemia
	Multiple myeloma
	Hypoplastic left heart syndrome
	HIV
	COVID-19
	Mucocutaneous lymph node syndrome

Adipose
	Crohn's disease
	Obesity
	Ulcerative colitis

Gut
	Crohn's disease
	Ulcerative colitis
	Colorectal cancer
	Esophageal cancer
	Gastric carcinoma

Bladder
	Bladder carcinoma

Kidney
	Renal cell carcinoma
	COVID-19

Breast
	Breast cancerEye

	Age-related macular degeneration
	Retinal degeneration
	Retinal dystrophy
	Retinoblastoma
	Uveal Melanoma

Lungs and airways
	Asthma
	Idiopathic pulmonary fibrosis
	Interstitial lung disease
	Scleroderma
	Non-small-cell lung carcinoma
	Cystic Fibrosis
	COVID-19
	Influenza
	Measles
	Pneumonitis
	Tuberculosis

Liver
	Liver fibrosis
	Non-alcoholic fatty liver disease
	Cholangiocarcinoma
	Hepatocellular carcinoma
	Alagille syndrome
	COVID-19
	Biliary atresia

Pancreas
	Diabetes (type 1)
	Obesity
	Pancreatic ductal adenocarcinoma
	Wolfram syndrome

Musculoskeletal
	Osteoarthritis
	Psoriatic arthritis
	Rheumatoid arthritis
	Osteosarcoma
	Duchenne muscular dystrophy
	Staphylococcus aureus infection

 Common complex disease   Cancer   Rare disease   Infectious disease   Other

Reproductive (female)
	Cervical cancer
	Endometrial cancer
	Ovarian cancer

Reproductive (male)
	Prostate cancer
	Klinefelter's syndrome

Development
	Gestational diabetes
	Pre-eclampsia

https://www.humancellatlas.org/
https://youtu.be/U1UMEH3TrUI
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The HCA isn’t the only large-scale single-cell sequencing effort. Atlasing projects have been on scientists’ minds for over a 
decade11-13. Examples include:

•	 The NIH Human Biomarker Atlas Project (HuBMAP) is a consortium using single-cell and spatial data to study a 
selection of tissues just like the HCA14. However, the wealth of spatial data sets HuBMAP apart and will be covered 
in a later section of this chapter.

•	 The Human Protein Atlas is a valuable resource in which single-cell proteomics data is being pooled to build a 
working resource.

•	 The Human Tumour Atlas Network15 presents a consortium aiming to profile tumours with a selection of 
sequencing and spatial technologies to build atlases. The Pan-Cancer Atlas from the Cancer Genome Atlas 
consortium mirrors this with over 11,000 tumours from 33 forms of cancer.

•	 The Harvard Tissue Atlas presents a variety of spatial datasets for human tissues along with new tools and 
standards with which to achieve the most from this technology.

•	 The Tabula Sapiens16 presents a large scale single experiment atlas of <500,00 nuclei across 24 different tissues. 
A feat mirrored with 8 tissues and 200,000 nuclei by the HCA17. 

•	 A cross-species cross-lifespan cell landscape of >2.6 million cells was recently put together to begin to explore 
conserved cell features and effects of aging18. This kind of resource is the long-term goal for human studies.

•	 Descartes is a resource collating data from the Shendure lab in the University of Washington, in which RNA and 
chromatin accessibility data of multiple organisms can be found19.

This is along with all the individual groups currently producing vast single-cell resources using modern high-
throughput technology, which everyone can benefit from.

UTILISING ATLAS DATA 
Atlases are a fundamental asset to basic biology. The value they might have for clinical applications is vast and 
summarised in Figure 3.10 With novel cell types and cell states being continuously discovered from these efforts, our 
understanding of tissues in a healthy state, and in a disease state, is always improving. Furthermore, by profiling these 
organs in a consistent way, the group have been able to draw conclusions about cell types from across the body, able to 
find common and tissue-specialised versions of cell types such as immune cells and support cells such as fibroblasts.20

However, accessing this data is not as straightforward as it might appear. These atlases are so huge that they 
cannot be casually observed, nor is it a simple task to compare your own generated data to the atlas. This is where 
computational biology methods have come into their own, and many tools exist to handle this problem.  

scArches21 is a transfer learning tool 
that directly addresses the problem 
of matching your data (the query) to 
a reference atlas, allowing you to do 
several things such as comparing disease 
data to healthy atlases and extracting 
cell types from the atlas to match your 
query. We spoke to Dr. Mohammad 
Lotfollahi, the primary developer of this 
tool, to get his opinion on the value of 
scArches. He has recently been involved 
with another tool – expiMap22 - that 
expands this process to map cells into 
gene programs, a more biologically 
understandable alternative, as well as 
proposing ‘treeArches’23, to progressively 
build and update reference atlases with 
new queries.
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FIGURE 3. OVERVIEW OF VARIOUS DIRECTIONS THE HUMAN CELL 
ATLAS IS CONTRIBUTING TO.
Image Credit: Lindeboom, et al.24

https://portal.hubmapconsortium.org/
https://www.proteinatlas.org/
https://humantumoratlas.org/
https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.tissue-atlas.org/
https://tabula-sapiens-portal.ds.czbiohub.org/
https://bis.zju.edu.cn/cellatlas/
https://descartes.brotmanbaty.org/
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Additional tools have been created this year to leverage reference atlases to automate the processing, analysis and 
interpretation of single-cell data. CellTypist25 allows automated cell type annotation using a curated database of cell 
types and marker genes. Azimuth is a web application and presents a library of 13 datasets, facilitating reference-
based mapping using these data. SEAcells26 allows you to infer RNA and epigenomic states using reference data.

Furthermore, interactive and user-friendly tools to access large-scale and atlas-level datasets are also on the rise. 
These include tools such as cellxgene27, a Chan-Zuckerberg Initiative tool, which allows interactive data manipulation of 
millions of cells. Also, TooManyCellsInteractive28, which allows users to manipulate single-cell data and visualise it as an 
interactive radial tree, and Cellar29, an interactive cell assignment tool.

Multiplex – The dawn of mass panel spatial mapping
Spatial technology has improved on several fronts, including in situ sequencing methods with enhanced resolution to spatially 
locate whole transcriptomes. Probe-based methodologies have also advanced, allowing large-scale hi-plex spatial experiments. 

SIZE MATTERS. SINGLE-CELL AND SPATIAL, MULTIPLEX AND MULTIOMICS

FLG: First of all, we wanted to talk 
about scArches. Can you describe why 
you developed it? What problem was it 
trying to address and how does it work?

Mo: The single-cell community and 
the consortia, such as the Human Cell 
Atlas and CZI, are trying to build a 
comprehensive reference of all the cells 
from our body, tissue by tissue. Once these 
atlases are built, ideally, you want to share 
them with the community so that they 
will be able to use it. However, how to use 
them is not straightforward. You can think 
of the atlases as a map, and you need 
an algorithm that can project the new 
data on that map. Since the data have 
been produced in a different lab, there is 
a batch effect or technical effect between 
them. The whole purpose of scArches 
was a to make these atlases usable and 
to share them with the community. Most 
people aren’t able to build these large 
resources, and this tool allows us to 
democratize the usage of atlases. 

How does it work? The concept of the 
map is the best way to explain it. When 
you have a map, you want to fix the 
coordinates, and you don't want to change 
the map every time you have new data. 
So, scArches receives a prebuilt atlas and 
receives the new data, which it maps on 

the top of this reference atlas by correcting 
the technical effecting differences between 
the query and the reference. 

By mapping new data to the existing 
atlas, you can transfer the cell type labels 
from the reference to the query, and that 
replaces the couple of months it would 
take someone to analyse the query data 
to get those cell type annotations. Also, 
when you put something in the context of 
a bigger thing, you might be able to find 
sub populations. For example, let's say you 
have beta cells in the query, and there are 
multiple sub populations of beta cell in the 
reference. When you map the query to the 
reference, it either aligns with the ones in 
the reference, or it separates out from the 
rest, which might give you a clue that this 
is a subpopulation that you would have 
never found out without mapping it to the 
reference

Another usage is for mapping disease 
data on the top of the healthy atlas. 
Diseases affect different cell types 
differently, and not all the cell types 
are affected by each disease. And by 
mapping your disease data on the top of 
the healthy atlas, you can find the ones 
that were affected since they will not be 
aligned. Based on that you can infer the 
cell states that are risk for disease. 

MOHAMMAD 
LOTFOLLAHI 

Scientist 
Helmholtz Munich/Wellcome 

Sanger institute 
Director of Machine Learning  

Relation Therapeutics
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Commercial technologies, such as Nanostring CosMx™, Resolve Molecular Cartography™, RNAscope Hiplex and Vizgen 
MERSCOPE™, allow 10’s or 100’s or even 1000’s of RNA probe-based markers. Furthermore, the spatial proteomics 
tools, such as Canopy CellScape™, Akoya Biosciences PhenoCycler®, Lunaphore Comet™, Standard Biotools the 
Hyperion™ and Miltenyi Biotec MACSima™, allow 20-100+ protein markers in hi-plex. Figure 4 shows the stunning 
images being generated with this type of technology; in this case, the human retina.

One of the goals of the HCA going forward is to incorporate both multiomics and spatial data into these largely singe-
cell RNA based resources. As of 2023, several of these atlases are now adding spatial data. These include the human 
heart, using 10x Genomics Visium4, the human lung31 and placenta32, using Visium and RNAscope, and the human 
breast using Visium, Molecular Cartography, RNAscope, MERFISH and Phenocycler33 - an example of the value of using 
many spatial technologies in one study.

As mentioned above, the HuBMAP consortium is leading the way in producing spatially resolved cell atlases. With 400 
individuals across 60 institutions, the goal is to generate high-resolution spatial atlases of the healthy human adult body14. 
Recent spatial maps include, the intestine, which was mapped using Molecular Cartography and CODEX technology34, the 
maternal-fetal interface using Multiplexed Ion Beam Imaging (MIBI) technology35, and the kidney, using SLIDE-seq2, Visium, 
RNAscope and large scale 3D tissue cytometry5. Figure 5 displays an overview of this experiment on the kidney.
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FIGURE 4. HIGHLY MULTIPLEXED IMMUNOHISTOCHEMISTRY OF A PRIMARY ADULT HUMAN RETINA SECTION. 
Image Credit: Wahle, et al. 30

FIGURE 5. HUMAN KIDNEY ATLAS USING SINGLE-CELL AND SPATIAL.  
(A) Human kidney samples from deceased donors (DD) or nephrectomies (Nx) were used for single-cell 3D imaging or Slide-seq2 and Visium. (B) Summary of 
samples. (C) Integration of Omic RNA data using joint UMAP embedding to align cell types across the different data modalities. Image Credit: Lake, et al. 5



Furthermore, there are large scale efforts 
performed outside of these two consortia. 
For example, the whole mouse brain (~8 
million cells) had a spatial atlas produced 
with MERFISH36. In cancer biology, recent 
examples of spatial analysis using imaging 
mass cytometry have examined ~1.1 million 
brain tumour cells37 and ~1.6 million lung 
adenocarcinoma cells38.

HANDLING LARGE-SCALE SPATIAL DATA
The large-scale spatial datasets are amazing 
resources, like their single-cell counterparts. 
To help standardise experiments across 
this space and allow wide usage of these 
resources, the community has recently 
created a Minimum Information for highly 
multiplexed Tissue Imaging39 (MITI). However, 
analysing spatial data to make the most of 
its additional spatial dimension is still a big 
challenge in the field. We will quickly review 
some of the newest tools on the block. 

One very basic challenge in spatial data is 
cell segmentation. With spatial methods 
now achieving sub-cellular resolution, i.e., 
with ‘spots’ inside of cells, the boundary of 
a cell is more important to define than ever. 
This is difficult when cells are crowded. In 
spatial proteomics, membrane markers allow 
distinction of cell boundaries, and tools such 
as RAMCES40 help select the optimal markers 
for your tissue. For transcriptomics, often a 
nucleus or membrane stain is used and cells 
are segmented with tools such as Cellpose41 or using deep-learning models such as Mesmer42. Recent tools such as SCS43 
use machine learning to adaptively learn how spots place within cells to more efficiently capture cell boundaries.

Other recent tools address specific challenges in the spatial analysis pipeline. CellSighter44 uses deep learning to better 
classify cells in hi-plex images. Bento45, a toolbox specific for subcellular analysis, can define subcellular domains and 
gene-gene colocalisation patterns. Visinity46 is a whole-slide visual analytics system to analyse cell interaction patterns. 
Finally, STELLAR47, a deep learning-based cell annotator, ‘learns’ cell types across different regions, tissues and 
samples, and automatically labels cells. 

Several ‘toolboxes’ or frameworks exist to perform multiple analysis steps and sophisticated downstream analysis in 
one platform. There are commercial options, such as HALO, which tend to be more refined but less flexible, or there 
are several options produced by the community. Recent, up-to-date examples include Squidpy48, which builds upon 
an existing package, Scanpy, to allow visualisation of gene expression data at spatial locations. Giotto49 is a toolbox 
for spatial data and allows identification of spatially variable genes and gene-expression/cell type colocalization. 
Finally, MCMICRO50, which represents an end-to-end pipeline to transform multi-channel whole-slide images into 
single-cell data. MCMICRO is scalable and allows new packages to be incorporated where desired. We spoke to the 
lead developer of MCMICRO, Dr. Denis Schapiro, about the issues of cell segmentation and how to handle hi-plex 
images.

FIGURE 6: THE CANONICAL WORKFLOW OF MCMICRO. 
MCMICRO allows end-to-end image processing of multiplexed whole slide images. 
Image Credit: Schapiro, et al. 50
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https://indicalab.com/halo/
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FLG: One of the surprising things for 
outsiders is that cell segmentation 
isn't completely robust yet. How close 
do you think we are to being able to 
robustly detect cells of different sizes 
and types in a tissue section?

Denis: As you said, cellular 
heterogeneity in a sample will always 
remain a challenge and additionally, we 
are working with a 2D representation of 
a 3D space. So if by robust segmentation 
you mean to have a single universal 
model that is able to perform an 
accurate segmentation on any given 
tissue in 2D, then that is still a few steps 
away. Fortunately, recent developments, 
allow retraining of segmentation 
models to make it more suitable for 
specific samples and cell types and 3D 
imaging methods are also emerging. 
At the moment, the question is rather, 
is the segmentation good enough to 
answer your specific question. One 
example would be looking at tumors 
and detecting 100,000 tumor cells. It 
doesn't matter whether you find 104,000 
or 100,000 tumor cells, but you may 
care whether you find 10 or 20 cells of 
a specific rare immune cell type. I would 
suggest thinking about what you want to 
discover and where segmentation needs 
to be very accurate and where it can be 
more forgiving.

I think the other part is that 3D is 
the next frontier. There you could 
theoretically be able to map all cells very 
accurately. If you had good membrane 
markers, it could work very well. It may 
be challenging for cells that don't have 
a nucleus, or have multiple nuclei, but if 
there's a really good membrane staining 
it should work quite well.

Lastly, we should also be thinking 
about methods that do not require 
segmentation. Direct calling of cell types 
or directly calling specific regions based 
on machine learning approaches are 
already emerging.

FLG: For someone who's quite new to 
the field, what computational tools and 
advice would you suggest to help them 
handle a high-plex image?

Denis: I think the key part is to just get 
started and run the analysis from the 
beginning to the end. This means accepting 
- at first - that your analysis may not be 
perfect. But once you run it from beginning 
to the end, you will understand what issues 
you need to prioritize, which issues are 
minor and should be addressed last, and 
what issue cannot be fixed so you may 
need to stop analysis and rather rerun 
the experiment. Getting your feet wet and 
running the data as soon as possible from 
beginning to the end will help you to really 
understand the quality and complexity of 
your data. Therefore, a dynamic, flexible, 
and scalable workflow is required.

To address these challenges, we have 
developed a pipeline called MCMICRO, 
which enables end-to-end processing of 
various multiplexed imaging methods. 
MCMICRO is convenient as it provides 
access to various preprocessing, 
segmentation and downstream analysis 
algorithms, allowing the user to try 
out different methods within the same 
environment. My research group as 
well as the Laboratory of Systems 
Pharmacology at the Harvard Medical 
School, which is led by Prof. Peter Sorger, 
continue to maintain, develop, and 
expand the pipeline. While MCMICRO is 
primarily command-line based, a team 
at OHSU, led by Prof. Jeremy Goecks, has 
developed a Galaxy implementation of 
MCMICRO, which provides a graphical-
user interface to the pipeline.

However, if you're just starting out, and 
you only have a few images to analyze, 
another great tool to start with is QuPath. 
QuPath has fantastic online tutorials 
and I think that it can get you very far if 
you don't have to scale it up crazily and 
you don't require specific tools for image 
processing or segmentation. u

DENIS SCHAPIRO 
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The other thing is you need to think about downstream 
analysis and the corresponding questions you want to answer. 
E.g., how will you identify your cell types of interest, how are 
you planning to perform neighborhood analysis and so on. 
Here I would suggest exploring the wide array of open-source 
tools available to our community. If you get stuck, open an 
issue either directly on the corresponding Github repository or 
on image.sc, which is a great resource and community.

Of course, there are also commercial tools, which should 
be explored if you have the necessary funding or work in a 
commercial environment.

To summarize, I would start with QuPath and see how far 
you get. If you need more flexibility and scale up, move to 
MCMICRO. 

FLG: What are some of the unique 
challenges in having highly multiplexed 
data, with that many signals all in one 
spatial area?

Jovan: Well, spatial biology is not 
new. In histology and histopathology, 
it is routinely considered by tissue 
staining, or by immunohistochemistry or 
immunofluorescence panels. These are 
in turn used for diagnosis, estimation of 
disease progression and assignment of 
patients to treatment groups. But they 
capture a limited number of variables 
or observations at every spatial location, 
ranging from two to, let's say, ten - on a 
good day. 

What we have now with the new 
technologies, capturing 10’s, to 100’s 
to potentially 1000’s of different 
molecular markers - this is definitely an 
unprecedented view of tissue biology. 
This, again, opens up the opportunity to 
ask the question - how can we improve 
our understanding of the relationship 
between structure and function? With the 
limited molecular panels, we could identify 
general cell types, a limited number of 
functional states of the cells and then 
reason on top of that. Now we have a 
more complete view of the molecular 
making of each cell within the tissue. 

Given these new technologies, that are 
both highly dimensional and deliver 
high resolution, we need computational 
tools that are adequate for approaching 
this type of data. Not necessarily 
completely data driven, but considering 
available domain knowledge, building 
upon current practices and adding an 
additional layer of information that we 
can learned from this new data. 

This means that the models we are building, 
based on these extended molecular panels 
and the extended spatial resolution, have 
to be interpretable and communicable - in 
a way that the domain experts that are 
using these models can apply them in their 
everyday work. Potentially also for future 
clinical applications.

FLG: Jumping off from that, could you 
describe MISTy, the tool you developed, 
in basic terms? What does it allow you 
to do with that multiplex spatial data?

Jovan: With MISTy we can start to explore 
the relationships that exists in the data at 
different spatial contexts. This is the basic 
idea that motivated MISTy. Let's see what 
makes these cells tick and how do they play 
a role within the tissue structure. Are there 
some relationships between the different 
molecules in space that we can capture? u
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Ultimately, the extra dimension of spatial data calls for interesting and novel ways to analyse it. MISTy51 is a machine 
learning framework which constructs multiple views of spatial data based on function context (Intrinsic, Local, Tissue 
– see Figure 7). From here, spatial relationships can be worked out within each of these views from highly multiplexed 
data. We spoke to lead developer, Dr. Jovan Tanevski, about highly multiplexed data and how MISTy works.



The Spatial and Single-Cell Analysis Playbook 32

SIZE MATTERS. SINGLE-CELL AND SPATIAL, MULTIPLEX AND MULTIOMICS

So, MISTy is a multi-view explainable machine learning 
approach. MISTy builds specific views that captures 
observations in different spatial contexts. These observations 
can be abundances of molecular markers or be focused on 
different functional aspects of the data. Given these views, 
we try to answer three questions.

The first question is, does the spatial context allow us to 
learn something more about the state of the cell that we 
are observing? The second question is, from which spatial 
context does this information come from? Is it coming only 
from within the cell, within the immediate neighbourhood 
or from the broader tissue structure? Finally, what are the 
underlying relationships that lead to the contributions and 
the performance of the model. 

MISTy is a predictive model and uses a regression task to 
judge whether we learn something from any of the spatial 
contexts. The underlying assumption being that if we can 
predict the abundance of a target molecule better by 
considering the abundance of all other molecules in different 
spatial contexts independently, then that means that there 
are potential relationships and additional information 
available in these different contexts. The significance of these 
relationships then corresponds to the estimated predictor-
target importances in the view specific models.

High dimensional spatially resolved data offers 
measurements of 100’s or 1000’s of different markers. 
In order to make our models interpretable, we needed 
to project this data into functionally relevant spaces. To 
this end, we use prior domain knowledge and combine it 
with the data-driven approach, in order to extract these 
functional relationships from the data. For example, instead 
of looking at the expression of 1000 genes, we can estimate 
the pathway activities within the cell given the expression 
of the genes. We can also represent each cell as the activity 
of the transcription factors. Making these projected values 
targets of our models, we can gain a look into the regulatory 
events that are happening within the cell and in different 
spatial contexts.

Furthermore, since we now have reference atlases that 
allow us to determine different cell subtypes, we can make 
the MISTy models specific to a certain cell and regions 
of interest. We can then explore what are the specific 
relationships for a specific cell type of interest and compare 
them across different spatial regions.  

Finally, MISTy is scalable and flexible. It can be applied to the 
different types of omics data. Unlike some related methods 
it works with relatively low number of samples, but it also 
scales well to 100’s or 1000’s of samples.

FIGURE 7. OVERVIEW OF MISTY, A MULTIVIEW FRAMEWORK FOR MULTIPLEXED SPATIAL DATA. 
MISTy takes multiple views of the tissues to extract (A) information about the expression of markers in a spatial unit at each view, (B) an estimate of 
the interactions amongst markers at each view and (C) a qualitative view of the communities of markers in each view. Image Credit: Tanevski, et al. 51
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Multimodal – single-cell & spatial multiomics
Finally, we come to the multimodal expansion of single-cell and spatial. While RNA might have been first, DNA, protein, 
epigenomics and now metabolomics data are being sequenced and viewed spatially. Whether this is alone in mono-
omic studies or together in multiomics, we are now trying to view a cell as a complex molecular entity with all the 
pieces of the puzzle accounted for. 

Multiomics is already being integrated into several of the large-scale single-cell projects listed previously. However, 
the expansion of spatial multiomics methods is the major story of the last year. Figure 8 highlights some of these 
spatial methodologies for different omic combinations. Highlights include, spatial CITE-seq52, which allows whole 
transcriptome and >1000 proteins to be measured at cellular resolution, and spatial-CUT&TAG/ATAC-RNAseq53. 
Chapter 5 will discuss this spatial epigenomic and transcriptomic tool in detail. 

MULTIOMICS INTEGRATION
While each ‘omic’ has its 
own challenges for proper 
preprocessing and analysis, the 
true challenge in the multiomics 
space is trying to integrate these 
omics into one shared space. 
Data from different modalities 
varies in dimensions and data 
type – RNA is measured across 
1000’s of genes while proteins 
are measured across 100’s, and 
DNA is a sequence of letters. 
Multiomics data also varies 
in distribution; for example, 
negative binomial (RNA) and 
Poisson (ATAC). If we want a 
holistic view of each single cell, 
this needs to be integrated.

The variety of options for 
multiomics data integration 
is beyond the scope of 
this playbook, for which 
readers should refer to 
recent reviews55-58 and 
benchmarking59. Here we will 
briefly examine some recently 
released and popular tools. 

Firstly, there are integration tools that integrate multiomics data within the same cell, within the same experiment. 
Examples of this include: MOFA+60, TotalVI61, WNN62 and scMoMaT63. The other set of tools align multimodal profiles from 
different experiments with tools such as GLUE64, MultiVI65, Cobolt66, Bridge67 and Multigrate68. The advantage of these tools 
is the ability to impute missing modalities in data with only single modalities. It is worth bearing in mind that many of these 
tools are tailored to the specific multiomics data (i.e., many are specific for CITE-seq), yet Multigrate is not limited to specific 
assays, giving it general usability. We caught up with Dr. Lotfollahi again (next page), this time to ask about Multigrate. 

Integrating multimodal data spatially is the next frontier for computational biologists. Spatial Glue69 represents the first major 
attempt to achieve this, using graph neural network like Glue with dual attention to integrate omics within spatial domains.

FIGURE 8. THE EXPLOSION OF MULTIOMICS SPATIAL TECHNOLOGIES OVER 
THE LAST 5 YEARS.
Representative spatial technologies for the different multiomics assessments. In the centre is a bar chart of 
the number of publications reporting spatial multiomics methods in different categories. Image Credit Li 54
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FLG: A lot of people are suggesting 
solutions for the problem of multimodal 
data integration. Can you briefly 
describe your tool Multigrate and the 
general problem with data integration?

Mo: Advancement in the technology 
has allowed us to capture data from 
these different modalities in each cell. 
This could be from the DNA space, 
for example, chromatin accessibility, 
whether that DNA region was transcribed 
into RNA, and then whether that RNA 
was translated it to a protein. Each 
modality gives us different information. 
An analogy would be that, for a person, 
you can have speech, you can have text, 
and you can also have a face image. 
They give you different information 
about each person and this is similar 
thing for the cell too. 

The question is, can we combine them 
to get the holistic view of the cell and 
how it behaves at different levels? But 
these modalities are different in nature, 
so DNA is a sequence, RNA is basically 
a matrix of counts and protein is also 
similar to RNA, but in a really different 
space. So, the question for multimodal 
integration is, how to integrate these 
data modalities together, to have one 
representation for the cell that combines 
all of those different modalities?

A challenge to that is that these cell 
atlases are usually built using RNA 
alone and not all the datasets have 
measurements from different modalities. 
Another challenge here is how to work 
with this partial information, and you 
would want an algorithm that can handle 
missing modalities. One last thing is the 
question of whether we can we actually 
understand the effect of each modality; 
for example, the effect of a disease might 
not be observable in RNA but might be 
observable in protein space.

With Multigrate, we wanted to extend 
these reference building efforts 
multimodally, to integrate all of these 
modalities while handling the missing 
modalities. It's a generative model. 
It learns a distribution per each 
modality, and it learns to combine those 
distributions into one unified distribution, 
which captures the intersection of all 
three different modalities. This then 
allows you to build a multimodal 
reference which you can project new data 
to, that shares some modalities with the 
reference. Then you can use the reference 
to impute the missing modalities in the 
query. This can help you to prioritise 
experiment design, because it's expensive 
to measure all these modalities together. 
And these types of algorithms can 
identifying the important modalities.
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FRIENDLY NEIGHBOURHOOD CELLS.  
CELL-CELL COMMUNICATION AND THE 

CELLULAR MICROENVIRONMENT
CELL TYPES IN EVERY 
TISSUE OF THE BODY 
HAVE BEEN ELUCIDATED 
WITH TRANSCRIPTOMIC 
AND PROTEOMIC DATA 
FROM SINGLE CELLS. 
HOWEVER, CELLS DO 
NOT ACT IN ISOLATION, 
AND KNOWING WHAT 
CELL TYPE YOU ARE 
LOOKING AT ONLY 
MAKES UP HALF THE 
STORY.

Tissues are living, dynamic entities, and 
cells are in constant communication 
with each other, taking the form of 
ligand secretion over short distances or 
endocrine signalling sent across the body. 
Measuring cell interactions is the next 
layer of information to map before we 
can say we fully understand the cellular 
composition of a tissue. 

In this chapter, we will look at the tissue microenvironment and how spatial biology is taking us beyond cell types 
to help us look at cell neighbourhoods and niches. We will also look at another burgeoning area of analysis, cell-cell 
communication. We will showcase some of the methodologies to quantify this from single-cell data, as well as the 
valuable role that spatial biology has played to identify cells in immediate communicable distance to one another.  

Friendly neighbourhoods – the tissue microenvironment
Single-cell sequencing has been revolutionary for understanding cells. Unfortunately, it necessitates the liberation of 
viable cells from the tissue, meaning context is lost for investigating cell interaction. 

Spatial biology addresses this issue. No longer are cells quantified as isolated entities based on their transcriptomic 
profile, but they are now visualised as members of a community of cells. Their placements and neighbourhoods can be 
analysed alongside their expression profile.

CHAPTER 4

CHAPTER SPONSOR

FIGURE 1. METRICS THAT CAN BE ISOLATED FROM ANALYSING 
THE TISSUE MICROENVIRONMENT USING SPATIAL TECHNOLOGY. 
The TME is used as an example here. The spatial architecture of the TME can be described 
according to the (A) location of cells, (B) distance between cells, (C) distribution of specific 
markers e.g., immunoregulators, and (D) specific spatial patterns. Image Credit: Fu, et al. 1
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Spatial transcriptomics, proteomics and multi-omics are all frequently used to study aspects of cellular niches, 
providing different levels of insight. Cell types can be visualised based on their location in tissue, their co-localization or 
avoidance of other cell types, and the niches they form with other cells in their vicinity. 

Figure 1 illustrates a variety of metrics and information about cells that can be extracted from spatial profiling of tissue 
microenvironments. With 100s of markers visualised in a single section of tissue, drawing these insights from spatial 
data requires specialist computational tools. Tools such as MISTy3 can view expression markers in a local and tissue-
wide view, to identify cellular communities and niches based on location and distance. Holistic software frameworks 
such as Giotto4 and Squidpy5 allow for interactive visualisation of spatial data and for identifying cell neighbourhoods, 
specific spatial patterns and the effect of cell neighbours on gene expression. 

Ultimately, downstream analysis is still lagging behind technology advancement, relying mainly on distances between 
cells to learn about communities. New analysis tools such as SPIAT6 explicitly address this problem and have a wider 
range of functions for neighbourhood analysis from basic cell typing and cell colocalizations to neighbourhood 
composition, niche heterogeneity and tissue region variations. However, it appears we are at the early stages of 
analyses to identify cell neighbourhood composition and interaction.

Studying cellular neighbourhoods is useful to many areas of biology. We asked Dr. Haiqi Chen about the value that 
studying cellular niches has for his area of research, reproductive biology. 
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FLG: For your research, what value 
do spatial technologies provide when 
studying the reproductive system? For 
example, what is the value of looking 
at cell neighbourhoods and niches?

Haiqi: Reproductive biology is broad 
enough that I cannot give you a generalised 
answer. Instead, I can give an example 
of what we've been studying. We are 
interested in how stem cells are regulated to 
produce sperm in the testes. Traditionally, 
when people study how stem cells are 
regulated by their microenvironment, they 
typically do gene deletion using animal 
models. It's quite powerful, and most of our 
basic knowledge about gene functions in 
regulating stem cells behaviours has come 
from this approach. But you can easily 
imagine the drawbacks, namely that it's 
really low throughput, it's historically been 
hard to generate genetic animal models 
and its time consuming. Right now, it's not 
so hard with the wide adoption of CRIPSR 
technologies, it's just time consuming to 
generate an animal model with a deletion 
for every single gene. You just can’t do that. 

Now with spatial technologies, we can 
really recapitulate the microenvironment 
from the ground up. We can see how the 

stem cells interact with other cell types 
surrounding them and then you could 
easily nominate molecular interactions 
that may be important. Or at least confirm 
these molecular interactions are present 
at a specific spatial location. This is more 
informative and can tell you that these are 
the ligand-receptor interactions that you will 
want to look at, instead of just going blind 
i.e. ‘I'm going to knock out this gene and see 
what happens.’ This is really helpful.

Another thing, there are just not that many 
ways to study human biology, especially 
for those tissues that are hard to model. 
For example, in my field, there's no reliable 
in vitro model to recapitulate human 
spermatogenesis - how sperm is produced 
from the stem cells all the way to the 
mature sperm. You just cannot do it in vitro. 
So, having access to human tissue samples 
and using spatial technology to really 
understand the molecular interactions 
within the human tissue sample is really 
powerful. With access to human tissue, we 
can look at spatially resolved cell types, 
spatially resolved transcriptome and other 
modalities such as protein, all together 
within intact tissue. That will give you so 
much more information than has been 
previously done.

HAIQI CHEN 
Assistant Professor 

UT Southwestern Medical 
Centre
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To further put current cell neighbourhood analysis into context, we will now provide an overview of an application of 
spatial technology to deconvolute a tissue microenvironment; specifically, the tumour microenvironment.

Not-so-friendly neighbourhoods – the tumour microenvironment
How tissue microenvironments differ 
in disease states is the focal point 
for many individuals working with 
spatial technologies. The Tumour 
Microenvironment (TME) is front 
and centre amongst targets to 
deconvolute. Tumour cells depend on 
the microenvironment for growth and 
metastasis. The constitution of these 
microenvironments is tissue-specific, 
consisting of many cell types clustered 
together7. Information such as the 
spatial distribution of tumour cells 
and the location of infiltrating immune 
cells can tell us a lot about cancer 
progression and potential treatment 
responses. 

Modern spatial technologies overcome 
the low-plex and low-throughput 
limitations of historical approaches, 
allowing the study of the spatial 
heterogeneity of cancer. Figure 1 
displays four key aspects of the spatial 
architecture of the TME that can be 
studied with spatial technologies; 
cell locations, cell distance/
neighbourhoods, protein distribution 
and cell microenvironments. Spatial 
omics not only quantifies and locates 
cells, but also reveals functions and 
potential intercellular reactions. Figure 
2 demonstrates how this can be used 
to piece together aspects of the TME.

Reviews on the topic provide extensive details2,8,9, but some broad findings from spatial analysis of the TME include:

•	 Multi-marker analysis has identified potential targets for immune therapy against solid tumours (e.g., 
Kinkhabwala, et al.10)

•	 The tumour interface has a unique microenvironment and has markers that distinguish tumour advancement 
(e.g., Hunter, et al.11).

•	 There is cellular heterogeneity across the tumour structure with cell composition associated with differences in 
cancer progression and immunosuppression (e.g., Nirmal, et al.12).

•	 Immune cells that invade the tumour are compartmentalised in a tumour specific way (e.g., Dhainaut, et al.13).
•	 TME cellular composition, spatial location and interactions are associated with disease prognosis (e.g., 

Danenberg, et al.14).
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FIGURE 2. INSIGHTS THAT CAN BE LEARNED ABOUT THE 
SPATIAL ARCHITECTURE OF TME, SPECIFICALLY IMMUNE CELL 
LOCALISATIONS.
(A) Tumours can be divided into different spatial compartments: tumour core, stroma 
and invasion margin. (B) Immune localisations within these structures such as tertiary 
lymphoid structures and perivascular niches have unique patterns which spatial biology 
has revealed. This means each compartment has unique cellular components and 
cellular neighbours. Image Credit: Fu, et al.1
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FLG: Could you briefly summarize 
the value of modern spatial 
technology for studying the tumour 
microenvironment? And what is the 
value of looking at these cellular 
neighborhoods?

Mai Chan: Advanced spatial 
technology enables high-resolution 
study of the tumor microenvironment, 
offering insights unattainable through 
single-cell technology alone. While 
single-cell methods can describe 
the behavior and phenotypic 

characteristics of a particular cell 
type, they don't reveal how these cells 
interact with each other. Knowing 
which immune cells are actually in 
contact with the tumor is crucial; 
otherwise, a physical barrier like 
fibroblasts or fatty tissue could 
prevent effective tumor cell killing. 
Further combining spatial data with 
histological information is therefore 
invaluable for understanding the 
role of cell-to-cell interaction and 
physical location within the tumor 
microenvironment.

MAI CHAN LAU 
Assistant Principal Investigator 

A*STAR’s Bioinformatics 
Institute (BII) and Singapore 
Immunology Network (SIgN)

FLG: There’s a variety of spatial 
omics tools to study the tumor 
microenvironment, how do people go 
about selecting one?

Mai Chan: The existing tools serve 
different purposes. Microdissection-
based spatial transcriptomics 
technologies are more robust 
because they are closer to the 
bulk sequencing. However, these 
technologies often require a very 
well-defined hypothesis of what you 

want to look at, and that always 
comes with some prior knowledge on 
the tissue either via histopathological 
assessment or additional assays on 
serial tissue sections. It would work 
if you already knew the regions you 
are studying and wish to compare 
them to see how they are different. 
Hence, it's a hypothesis validation 
approach. For higher resolution 
spatial transcriptomics technologies, 
these are more exploratory. They give 
you more flexibility and chances to 
finding novel insights. When selecting 
technologies, it's essential to consider 
their compatibility with two types of 
tissues: fresh frozen and formalin-
fixed paraffin-embedded. Additionally, 
it's important to determine if the 
technologies are based on NGS 
(Next-Generation Sequencing) or 
target probe methods. Whilst spatial 
proteomics technologies can be 
divided into two main categories: 
fluorescence-based and mass-based 
approaches. These technologies 
provide detailed molecular insights 
at a sub-cellular level, capturing 
information from 5 to 100 plex.
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Recent work15 has used spatial in situ methods to generate a 3D model of TME cellular neighborhoods by profiling 
subsequent sections of tumours. While 2D approaches can help locate a selection of cellular neighborhoods, cells live 
in 3D space and have neighbors in all directions. Valuable insights can be gained from taking the 3D approach. We 
spoke to Tancredi Pentimalli, first author of this study, to hear why. 

FLG: You must get a lot of people 
wanting help with investigating the 
tumour microenvironment. Everyone 
knows this will depend on the research 
question, but is there some common 
advice you would give someone if they 
brought you a tumour sample for 
studying the TME?

Jared: Yes, and no. I have to get the 
researcher to define the problem, and 
a lot of them come in with ‘I want to 
see what happens’. We also have the 
problem that these are like the first 
images of Mars, we've not mapped a lot 
of these tissues in a high-plex assay. So, 
we don't know how the macrophages 
relate to tumour cells and how they 
are influenced or communicate with T 
cells and what happens when we add 
five B cells to this mix. So, there is some 
validity to ‘see what happens’. But we 
have to have something that we can 
measure. So most often, I start with 
a random list of antibodies/protein 

targets/genes. We will want to look at 
structural markers. Structural markers 
tell us where things occur. We will want 
to look at phenotypic markers, which 
tells us which cells are present in those 
locations. And then ultimately, we will 
want to look at functional markers, 
which tells us what the cells are doing. If 
we can look at a structural, phenotypic 
and functional set. Then we can look at 
tissue samples from a long-term survivor 
versus a short-term survivor. Or we can 
look at immune therapy patient’s tissue 
versus a traditional therapy patient and 
ask questions. How are their cellular 
neighbourhoods physically different 
and what type of correlative do we find 
amongst those two different groups? 
That's something that we can actually 
put a physical number to, whether that's 
in the characterization of four or five 
cells together, or if that's just a single 
T cell to tumour cell distance metric, 
which is one of the low hanging fruit 
measurements.

JARED K. BURKS 
Professor & Co-Director, Flow 

Cytometry & Cell Imaging Core 
Facility 

The University of Texas MD 
Anderson Cancer Centre
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Spatial proteomics for 
understanding the TME
To study the TME sufficiently, we need 
tools that can spatially identify interactions 
between tumour cells, immune cells 
and stromal cells within the TME. This 
requires quantification of high numbers of 
proteins with spatial organisation. Spatial 
proteomics has already identified unique 
TME communities that correlate with 
cancer severity16-18 and look promising for 
refining future treatment strategies.

Spatial proteomics is a valuable method 
for profiling molecular characteristics of 
tumours regardless of whether a top-down 
or bottom-up approach is used (see Figure 
3). Spatial proteomics can effectively define 
cellular neighbourhoods, identify cell-cell 
communication through ligand-receptor 
colocalization and direct visualisation 
of ligand and receptor proteins and 
ultimately lead the way to personalised 
cancer treatment. Analysis of cell-cell 
communication is covered in depth in the 
next section.
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FLG: What are the advantages of 
viewing cellular neighborhoods in 
3D as opposed to 2D? Did you learn 
anything new about the tumour 
microenvironment as a result?

Tancredi: Cells live and communicate 
in 3D tissues. In our experiment 
exploring cellular neighbourhoods, 
we show how profiling these 
neighbourhoods in 3D better 
captures the spatial organization 
of cells into multicellular niches. 

In the tumour microenvironment, 
investigating 3D neighbourhoods 
identified intratumoral immune 
niches, which were invisible in 2D. 
These are critical for orchestrating 
the anti-tumoral immune responses 
and 3D neighbourhoods identified 
which interactions could promote 
tumour immune escape in situ. In the 
immunotherapy era, 3D approaches 
will have a central role for studying 
and therapeutic targeting of patient-
specific receptor-ligand interactions.

TANCREDI MASSIMO 
PENTIMALLI 

PhD Student, Nikolaus Rajewsky 
Lab, Berlin Institute for Medical 

Systems Biology (BIMSB), 
Max-Delbrück-Centrum (MDC), 

Berlin School of Integrative 
Oncology (BSIO), Charité – 

Universitätsmedizin Berlin

“IN THE TUMOUR MICROENVIRONMENT, 
INVESTIGATING 3D NEIGHBOURHOODS IDENTIFIED 
INTRATUMORAL IMMUNE NICHES, WHICH WERE 
INVISIBLE IN 2D.  THESE ARE CRITICAL FOR 

ORCHESTRATING THE ANTI-TUMORAL IMMUNE RESPONSES ..."

FIGURE 3. ANALYSING SOLID AND LIQUID TUMOURS WITH 
MULTIPLEXED SPATIAL PROTEOMICS. 
Tumour samples can be assessed using a top-down approach, studying the 
tumour microenvironment as a complex heterogeneous entity. Or as a bottom-up 
approach using cell cultures to analyse cell behaviours individually. Either way, 
multiplex imaging techniques are applied to both approaches to profile molecular 
characteristics. Image Credit: Allam, et al.19
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The TME includes malignant and non-malignant cell 
populations that play a role in immunotherapy. A 
vast number of markers are required to effectively 
characterize the location and relationships between 
immune infiltrates, tumor-specific markers, and 
structural components of the tumor. A spatial biology 
approach that can elucidate the variety and function of 
different cell types is critical to unravel this complexity, 
identify new target candidates, as well as predict and 
monitor the response to therapeutic intervention.

There are a number of challenges that emerge from 
performing truly high-multiplexed spatial proteomics. 
This includes the overall workflow, availability of 
antibodies to identify the extensive number of markers 
needed to fully characterize the TME, as well as the 
ability of a researcher to analyze the data without 
reliance on the expertise of bioinformatics specialists 
to begin deriving insights. The MACSima™ Spatial 
Biology Imaging Platform was developed to overcome 
these obstacles and allows users to focus on the 
science as they navigate complex tissue environments, 

such as the TME. This system is unique in its ability 
to automatically stain and image a virtually unlimited 
number of targets using MACSima Imaging Cyclic 
Staining (MICS) technology with walk-away ease. Once 
images are acquired, the accompanying MACS® iQ View 
Image Analysis Software provides a simple yet powerful 
analysis solution that was designed specifically to 
analyze the large data stacks  acquired with ultrahigh-
plexed imaging (Figure 1). 

READY-TO-USE MACSIMA ANTIBODY PANELS FOR 
SPATIAL MULTIPLEX IMAGING
Selecting from a portfolio of hundreds of performance-
verified antibodies for immunofluorescence (IF), 
Miltenyi Biotec developed the REAscreenTM Immuno-
oncology Antibody Panel that provides a convenient 
and standardized staining panel, dried down in a 
96-well plate. 

The plate is simply placed into the MACSima System 
and the pre-defined panel is selected from a menu in 
the experiment set up in the operating software.

DEEP PHENOTYPING AND ANALYSIS OF THE IMMUNE 
MICROENVIRONMENT ACROSS DIFFERENT SOLID 
TUMORS UTILIZING A COMPLETELY AUTOMATED 
IMAGING SYSTEM AND STAINING PANEL

CASE STUDY

FIGURE 1. 
Left. Automated workflow using a pre-optimized REAscreen Antibody Plate for MICS on the MACSima Spatial Biology System. Right. The MACS 
iQ View Image Analysis Software Package enables immediate access to data analysis by the user. 
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The REAscreen Immuno-oncology Antibody Panel was 
optimized for human formalin-fixed paraffin-embedded 
(FFPE) samples and contains 61 essential markers to 
identify immune cells, tumor stroma including blood 
and lymphatic vessels, and malignant epithelial cell 
populations, in either their proliferative or apoptotic 
state. It enables the analysis of at least 12 potential 
immune cell subsets within the tumor microenvironment, 
as well as the activation or checkpoint status of those 
populations.

Performance was verified on numerous solid tumor 
tissue samples (Figure 2), including cervical squamous 
cell carcinoma (CSCC), head and neck squamous 
cell carcinoma (HNSCC), melanoma, pancreatic 
ductal adenocarcinoma (PDAC), as well as colorectal 
adenocarcinoma (CRC) (Figure 3), and tonsil tissue, 
which was used as an internal control for each MICS 
experiment. 

SPATIAL PROTEOMICS USING MICS REVEALS 
DISTINCT CELL POPULATIONS WITHIN THE TUMOR 
MICROENVIRONMENT
 The different tissues show distinct distribution of 
several immune cell populations within the tumor 
microenvironment. For example, the CRC sample shows a 
low-grade infiltrating adenocarcinoma with colon mucosa 
and submucosa and a prominent lymphocyte infiltrate; a 
tertiary lymphoid structure is also visible towards the left 
of the region of interest (ROI) (Figure 3).

NEIGHBORHOOD ANALYSIS AND IMMUNE CELL 
POPULATIONS
Distance mapping can point to signatures in the 
different populations and neighborhoods where the cells 
reside and help draw conclusions about relationships, 
communication and function. The MICS data can be 
analyzed comprehensively by multiple workflows within 
MACS iQ View Image Analysis Software  or exported to an 
established bioinformatics pipeline. Here, MACS iQ View 
was applied to segment the cells based on nuclei staining 
using an established algorithm followed by identification of 
the immune cell populations through cell gating of distinct 
phenotypic cell types and the creation of distance maps.

Intra-tumoral regions were defined by the tumor cells 
using tumor-specific markers and peri-tumoral and 
distant regions were established (Figure 4 A-B). Cell 
populations were gated as follows: Tregs (CD4+ FoxP3+, 
mast cells - mast cell tryptase+, neutrophils (CD11b- 
CD66b+),  M1 macrophages (CD14+ CD68+CD163-), 
M2 macrophages (CD14+ CD68+ CD163+), Monocytes 
(CD11b+), NK cells (CD56+), Plasma cells (CD79a+), B cells 
(CD20+), helper T cells (CD4+), cytotoxic T cells (CD8+).

FIGURE 2. MAGNIFIED OVERVIEWS OF MULTIPLEX 
IF STAINING OF HUMAN FFPE CANCER TISSUES.
Images display expression of relevant markers noted in each 
figure. (A) CSCC, (B) HNSCC, (C) melanoma, (D) PDAC. 
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Subsequently, the percent of each immune population 
within the respective tumor regions could be identified 
(Figure 4D). The MACS iQ View Software includes 
additional dimensionality reduction tools such as t-SNE, 
UMAP, and heat maps, all designed to derive insights 
from large and complex data stacks. 

WHAT’S NEXT? COMBINING SPATIAL PROTEOMIC AND 
TRANSCRIPTOMICS TOGETHER FOR HIGH SPATIAL-
RESOLUTION MULTIOMICS 
Miltenyi Biotec introduced a combination of spatial 
transcriptomics and proteomics on the MACSima 

Imaging System at the American Association for 
Cancer Research meeting earlier this year.  This 
multiomics approach, which generates highly specific 
and quantitative gene expression profiles and protein 
signatures on the same tissue section and platform, 
that will allow users to push the boundaries of spatial 
biology. The resulting data allows for a deep dive into 
the mechanisms of tumor progression, while providing 
the spatial context within which these events occur. 
Such comprehensive spatial tumor profiling has the 
potential to improve biomarker identification, tumor cell 
phenotyping, and clinical prognoses for patients.

FIGURE 4. ANALYSIS USING MACS IQ VIEW. 
Distance maps of the human CRC (A) and PDAC (B) samples. (C) Magnification of the CRC sample, showing the identified immune cell 
populations. (D) Percent of the indicated immune populations per total number of immune cells within the respective tumor region.
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Cell Gossip – the study of cell-cell communications
The above section highlights the value of viewing cells in context. However, to truly analyse a cell’s community, 
we need to know what they are saying to each other. For this we need to look at the recent advances in cell-cell 
communication. 

Cells have various ways of communicating; an important mechanism is for ‘sender’ cells to secrete ligands that can 
bind to corresponding receptor proteins on the plasma membrane of ‘receiver’ cells.

The analysis of cell-cell communication is limited, since we do not yet have the necessary capabilities to track individual 
ligands as they are produced, released and bind to receptors. Instead, cell-cell communication is an inferred analysis. It 
is performed downstream from single-cell sequencing and spatial data and uses the expression of genes and proteins 
for specific cell messengers (ligands) and the complementary receptors for them. 

We asked our contributors why studying cell-cell communication matters.
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FLG: For people who aren't familiar 
with it, why is it valuable to study 
cell-cell communication in cellular 
microenvironments?

Robin: Cell-cell communication is 
a crucial process in multicellular 
organisms. Our tissues are comprised 
of different types of cells and to make 
sure the tissue is functioning properly, 
and hence the organism is functioning 
properly, the cells have to coordinate 
their functions with each other. Also, 
cell-cell interactions are very important 
in development. A classic example 
are stem cells that will differentiate 

into functioning differentiated cells, 
and this is often due to the influence 
of external signals produced by 
cells in the environment. Cells are 
constantly talking to each other within 
multicellular organisms. Cells within 
tissues, and sometimes between 
tissues, are talking to each other by 
producing several molecules. This is 
crucial to understanding basic health 
and different diseases. In diseases, like 
COVID-19, there is a dysregulation of 
the immune response, and it is because 
the immune cells talk differently to each 
other compared to normal responses 
to a virus.

ROBIN BROWAEYS  
Team Leader – Bio-IT Support 

VIB Centre for Inflammation 
Research, Ghent University
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Single-cell methods for cell-cell communication
Two classes of methods exist for this analysis in single-cell data. There are (1) methods that measure the levels of 
ligands and of receptors in cell clusters to ascertain the level of communication these cells are having; and (2) methods 
that estimate downstream intracellular activities (e.g., gene-expression changes) alongside ligand-receptor expression 
rates to try to estimate whether a ligand has bound and affected genomic processes in the cell.

All methods operate on a basic assumption; that transcriptomic data is a good proxy for cell-cell communication 
events. However, cell communication happens at the protein level and is spatially constrained. Hence, a level of 
caution is necessary when interpreting the output of cell-cell communication methods. Furthermore, crosstalk is often 
estimated between cell populations rather than between cells of a population, which is realistically where a lot of 
communication will occur. However, these methods have recently been shown to be robust and concordant with both 
proteomic and spatial ligand/receptor data20 so should not be overlooked.

We will now review several of the tools available for evaluating cell-cell communication from single-cell data (see Figure 
4 for the principles of this analysis) followed by a discussion of how spatial analysis will accelerate this field drastically.
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FLG: Please can you give a description 
of cell-cell communication and why it 
matters?

Sam: It’s a great question, I think it’s an 
emerging area in the field and I don’t know 
how many people even know to ask that 
question. So, why do we care about cell-
cell communication? Why is this important 
for tissues? When we study biology, 
either in humans or animals, or we study 
pathology, like disease versus control 
tissues, in most cases you are dealing 
with a tissue, which is made of cells. A lot 
of diseases that are actively being looked 
into, at this point, are really tissue level 
diseases. What’s going wrong is not just 
a single genetic defect and it’s not just a 
single cell type. Rather it’s where the entire 
tissue as a whole isn’t behaving properly 
and isn’t able to stay in a healthy state.

Now, how does a tissue operate? This 
is  the fundamental answer to your 
question. A tissue is this community of 
cells that are all talking to each other. And 
some of them might be directly contacting 
one another, some of them might be 
very close by, but they’re constantly 
sending and receiving signals from 
one another. That signalling between 

those individual cells is what allows this 
community of cells to stay in a stable 
state and operate correctly. When we 
study cell-to-cell communication, we get a 
really good quantitative window into that 
conversation between the community 
members. We can understand why a 
tissue might be stable, or why it might be 
falling into a disease state.

An analogy I use is, imagine if you’re 
studying a city. If you were to study New 
York City, you could do a census, and 
you could study all of the individuals 
in that city, and you could know where 
they lived,   who they were, what they did 
for a living and everything about them. 
But all you would have was a static 
snapshot. And you can actually learn a 
lot from that kind of a thing. 

What connectivity analysis or ligand-
receptor-signalling analysis allows you to 
measure is how all of those individuals are 
talking to one another. It’s like seeing their 
phone calls or the mail that they’re sending 
or something that gives you a sense of 
the different relationships between one 
another. It gives you an architecture to 
understand how a city is operating rather 
than just what makes up a city.
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The first class of tools, discussed 
above, use ligand/receptor expression 
estimates. They are the most common. 
An overview of the major tools in the 
field already exists, which the reader 
should refer to20. Several popular tools 
in this category include CellPhoneDB22 
and CellChat23, which have well curated 
ligand-receptor databases to infer cell 
communications. The outcome of the 
review process saw the creation of a 
new tool – LIANA (Figure 5) – that takes 
single-cell RNA data and establishes 
a common interface with all methods 
and resources that exist for cell-cell 
communication, providing a consensus 
ranking for the method’s prediction. 

For the second class of tool, those which 
estimate the downstream effects of 
signalling, NicheNet24 is the most well-
known in this space. NicheNet, like the 
first class of tools, assumes that a sender 
cell produces a ligand if the gene for that 
ligand is expressed. It goes beyond the 
other methods by also assuming that 
the receiver cells (with the receptors) will 
experience a signal propagation affecting 
master gene regulators and TFs, which 
can be measured. NicheNet makes use 
of prior knowledge of downstream gene 
effects to do this. 

Recently, NicheNetv2 and 
MultiNicheNet have also been 
released25. NicheNetv2 adds 
experimentally determined target 
genes for over 100 ligands, grounding 
the predicted downstream effects 
in biology. MultiNicheNet tackles a 
problem in the cell-cell communication 
field - appropriately analysing 
multiple samples and conditions. 
In brief, MultiNicheNet infers the 
differentially expressed ligand-
receptor pairs between conditions 
and the downstream target genes, 
while accounting for inter-sample 
heterogeneity. Dr. Robin Browaeys was 
first author for both tools. We spoke 
with Robin to get to grips with this new 
version of NicheNet.

FRIENDLY NEIGHBOURHOOD CELLS. CELL-CELL COMMUNICATION AND THE CELLULAR MICROENVIRONMENT

FIGURE 4. PRINCIPLES OF CELL–CELL COMMUNICATION INFERENCE.
(A) Cells can secrete ligands that diffuse and can bind to receptors. This is likelier to 
occur for receiver cells that are closest to the sender cell and when there is sufficient 
receptor expression. The blue and orange cells represent different cell types. For the blue 
cells, darker shades represent stronger ligand expression. (B) Cell–cell communication 
can be inferred from scRNA-seq at either the individual cell or cell cluster level, but 
spatial distances between cells are lost. (C) Using spatial transcriptomics to infer cell–
cell communication preserves spatial distances between cells but potentially at the loss 
of single-cell or gene resolution. Image and Caption Credit: Almet, et al.21

FIGURE 5. OVERVIEW OF LIANA. 
LIANA takes any annotated scRNA dataset and establishes a common interface to 
all the resources and methods in any combination. LIANA also provides a consensus 
ranking for the method’s predictions. Image Credit: https://saezlab.github.io/liana/ 

“THE ANALYSIS OF CELL-CELL 
COMMUNICATION IS LIMITED, 
SINCE WE DO NOT YET HAVE 

THE NECESSARY CAPABILITIES TO 
TRACK INDIVIDUAL LIGANDS AS THEY 
ARE PRODUCED, RELEASED AND BIND 
TO RECEPTORS."

https://saezlab.github.io/liana/
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FLG: Can you briefly describe how you can work out 
cell-cell communication from transcriptomic data? 
And how does your tool, NicheNet, work?

Robin: The boom in methods to study cell-cell 
communications came after the boom in single-cell 
experimental technologies, because these data now allow 
us to identify different cell populations etc. The evident 
next question is, how do these different populations in 
my sample communicate with each other?

The most well-known tools for this 
are CellPhoneDB, CellChat and 
NicheNet. I think CellPhoneDB was 
one of the first dedicated tools for 
studying cell-cell communication on 
single-cell transcriptomics data. This 
tool looks at co-expression of ligands 
and receptors across cell populations 
and it will use some permutation 
tests to actually determine which 
interactions are specific between 
which cell types. These tools assume 
that if you have RNA expression of a 
gene that encodes a ligand protein 
in cell type A, and you have the RNA 
expression of a gene that encodes 
a receptor in cell type B, then there 
might be communication between 
cell type A and cell type B through 
this ligand-receptor interaction. To 
do this, they integrate expression 
data of your cells with databases of 
ligand-receptor pairs constructed 
using prior knowledge. 

Parallel to that we developed NicheNet, and we use 
a different principle. We focus on looking for the 
enrichment of target genes of the ligand-receptor 
interactions. One of the predominant effects of cell-cell 
communication is a change in gene expression in the 
receiving cell type and we wanted to build a model 
that would allow us to say ‘these secreted ligands can 
potentially regulate these genes’ in other cell types. 

How did we do that? Actually, the same principle 
as these other tools, we combined our expression 

data with prior knowledge from 
databases. Now, we are not 
only looking at ligand-receptor 
interactions, but also, everything 
that's happening downstream in 
terms of transcriptional regulation. 
Hence, we had to integrate several 
data sources and databases to 
do that. Then we came up with a 
predictive model that predicts target 
genes regulated by ligands, and 
we validated this model to check 
how well it works. This model can 
then be used on transcriptome 
data of interacting cells to look 
at downstream effects of ligand-
receptor interactions to prioritize 
them based on that. Other tools will 
typically generate quite large lists of 
interactions because each cell type 
expresses several ligands, several 
receptors, meaning there are 
many combinations and possible 
redundancy. 

ROBIN BROWAEYS 
TEAM LEADER – BIO-IT 

SUPPORT
VIB CENTRE FOR 

INFLAMMATION RESEARCH, 
GHENT UNIVERSITY

INTERVIEW: 

“ONE OF THE 
PREDOMINANT 

EFFECTS OF CELL-CELL 
COMMUNICATION IS 
A CHANGE IN GENE 
EXPRESSION IN THE 

RECEIVING CELL TYPE 
AND WE WANTED TO 
BUILD A MODEL THAT 
WOULD ALLOW US TO 
SAY ‘THESE SECRETED 

LIGANDS CAN 
POTENTIALLY REGULATE 
THESE GENES’ IN OTHER 

CELL TYPES."



Whereas for NicheNet, the goal from the beginning 
was to prioritize interactions based on what we see 
in the receiver and predict what might have been the 
most important signal produced by the sender cell. A 
limitation is that we have to use this prior knowledge 
model, which might lead to some false positive and 
false negative predictions. So, it's a double-edged 
sword. Why would you use NicheNet? It helps you 
prioritize, but you might miss some things.

FLG: And then the new tool, MultiNicheNet, expands 
this out to analyse multiple samples?

Robin: Yes, it was specifically developed to handle 
datasets with multiple samples. We came to the 
idea that there was a need for that during the 

COVID-19 pandemic. I got sent datasets from the 
university hospital and they wanted to look at cell-
cell communication dysregulation between COVID-19 
patients and healthy controls. If I applied NicheNet 
in the normal way, it would not be very appropriate, 
because we typically pool all the cells of all patients 
together, and then analyze cell-cell communication. 
This then ignores variation between patients and that 
cell-cell communication happens within one patient. To 
handle that, we produced MultiNicheNet. We based our 
tool on the principles of differential expression analysis 
methods that were recently developed to perform 
proper DE analysis on multi sample datasets. Then we 
applied these principles to our NicheNet framework. 
On top of that, we also included some other 
prioritization criteria, such as cell type specificity and 

differential expression of the ligand-receptors 
pairs themselves, as was done in the other 
tools. So, it’s a multi sample extension to 
NicheNet, but it also incorporates some 
elements of the other tools.

FLG: Are there any plans to incorporate 
spatial data into NicheNet? 

Robin: I think that's definitely a goal for 
my previous research group who will 
now continue working on NicheNet, and 
its extensions. In practice, this is not 
straightforward because you have to consider 
the different spatial technologies, each with 
their limitations.  You have technologies 
that allow you to profile cells at single cell 
or sub-cellular resolution, but they’re not 
transcriptome-wide. Transcriptome-wide 
would be needed for proper NicheNet 
analysis because the approach is based 
on enrichment compared to background. 
On the other hand, you have technologies 
that generate a transcriptome wide profile 
of spots, and these spots typically contain 
transcripts of several cells. People say 2-10 
and then in practice it might be between 5-20, 
or 5-50. It depends on the tissue but it's not at 
the single cell level. How do you transfer this 
to cell-cell communication? Are you looking at 
communication within a spot? Between spots? 
The conclusion isn't very straightforward. The 
spatial data with single cell resolution, it's not 
transcriptome-wide yet, but those data might 
be interesting to detect which cell types might 
be co-occurring, and this information can 
be used in parallel, to better inform you on 
which cell type combinations you run in your 
cell-cell communication analysis. 
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NICHES26, tackles another problem that cell-cell communication methods have; not taking advantage of the single-cell 
data. Most methods average ligand expression across a cell cluster as a measure of the cell type’s ligand expression. 
NICHES, by comparison, operates at the single-cell level, measuring the interactions of every cell with another cell, 
comparing them in an iterative pairwise manner (see interview below for more details).

Spatial methods for cell-cell communication
A biological reality of ligands is that they 
can only travel a certain distance once 
secreted21. With the influx of spatial 
data, the opportunity is arising for a 
more accurate assessment of cell-cell 
communication, one which calculates 
communication within a defined niche 
of cells to which ligands can actually 
disperse. Figure 6 displays the tasks and 
outputs of spatial analysis of cell-cell 
communication. 

Not only does NICHES bring new insights 
to single-cell data, but it can also be used 
for spatial data. By limiting the analysis 
of ligands and receptors to spatial 
neighbours, microenvironment signalling 
can be assessed. We spoke to Dr. Micha 
Sam Brickman Raredon, lead author of 
NICHES, for further details.
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FIGURE 6. SPATIAL ANALYSIS OF CELL-CELL COMMUNICATION
(A) Integrating spatial and scRNA-seq data provides combined information and can 
allow cell type assignment and spatial distance estimate data (B) Current spatial cell–
cell communication inference methods output: a cell–cell or cluster–cluster network due 
to ligand–receptor binding and more general intercellular gene regulatory networks in 
space. Image Credit: Almet, et al.21
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FLG: Can you describe how your new tool, NICHES, works?

Sam: NICHES can be applied to either single cell or 
spatial data, but it is always doing the same fundamental 
operation, which is that it's pairing cells together, taking 
one cell and treating it as a sending cell and another 
cell and treating it as a receiving cell. Then it looks at the 
ligand expression of the sending cell and the receptor 
expression on the receiving cell. These are like connected 
edges and you can infer potential communication there. 
It's like shortwave radio operators, many people can be 
tuned to the same radio wavelength, but if two individuals 
tuned to a very specific wavelength, they can have quite 
a degree of privacy. You know, other people are listening, 
but it shows you that there's a connection there. NICHES 
looks for that kind of pattern. If they're the only two 
individuals within this population that are doing that, 
there's a very high likelihood that they are leveraging that 
communication for some kind of a biological function. 

Previous techniques that came before NICHES would 
average cellular populations. So, you'd perform single-
cell for a tissue, and you'd get 50 different cell types that 
are very different phenotypically. The previous tools 
would take one cluster and look at the average ligand 
expression in that whole cluster, and then another cluster 
and they would take the average receptor expression of 
that cluster. They would then just create an edge between 
those two mean values. This is extremely lossy. It's great, 
it's very powerful and it's been used very extensively. 
However, you’re obscuring all of that fine patterning 
and the subtlety around how these two populations 
are communicating with one another. You just can't 
see it because you've regressed both to the mean. You 

also destroy the beautiful statistical power of single-cell 
technologies; we're not just measuring something once; 
we're measuring hundreds of thousands of times. 

We built NICHES to specifically solve this problem. As I said, 
it takes one-to-one cell pairs. But if you zoom out from that 
a little bit, it takes one population and another population, 
and it randomizes both, and then it creates those one-
on-one pairs, and it does it thousands of times. So, you 
get really high statistical confidence that a certain set of 
wavelengths is exclusively or preferentially being used to 
communicate information between these two populations.

The spatial data has this added benefit that you have x,y 
coordinates, which means you can limit the edges that 
you're analysing just to local neighbourhoods. This is really 
the way that tissues work, and it is what makes them so 
beautiful. A lot of these ligand-receptor mechanisms, they 
have a maximum diffusion distance. They can only really 
send a message over 300 microns or 500 microns, and 
after that the signal has diffused down so that it's not really 
there anymore. If you can say these cells are co-localized, 
and they're highly connected, that's much stronger 
evidence than if you just started doing it in the abstract.
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Other methods have been developed to take advantage of spatial transcriptomic data. Fundamental packages such 
as Squidpy5 and Giotto4 have ligand and receptor analysis methods in a spatial context. There are also graph-based 
methods such as SpaTalk27, which evaluates intercellular and intracellular communication. Newer mathematical 
methods, such as COMMOT28, look promising. Rather than assessing ligand and receptor levels, these methods work 
out optimal transport systems for ligands within spatial constraints, and use them to predict cell communication 
patterns across a tissue. Combining single-cell and spatial data from the same tissue is another promising avenue, 
using the cell type annotations of the former and the spatial context of the latter (See Figure 6A). A tool, Renoir29, has 
recently been released for this purpose, and can infer communication niches, as well as identify the major ligands in 
each niche, uncovering key players in cell communications.

Ultimately, to get the most out of spatial data for cell-cell communication, it needs to be hi-plex, allowing the 
visualisation of many ligand and receptor genes and/or proteins in the same section. As single-cell and spatial 
proteomics develops to include more targets, we can hope that direct ligand and receptor protein assessment will be 
commonplace for assessing cell-cell communication.
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CHAPTER 5

BEYOND THE GENOME. SINGLE-CELL AND 
SPATIAL EPIGENOMICS

DNA, RNA AND PROTEIN MAKE UP THE CENTRAL DOGMA OF 
GENOMICS. THEY ARE THE TYPICAL TARGETS OF MOST SEQUENCING 

EXPERIMENTS THAT TRY TO UNDERSTAND A CELL’S IDENTITY AND 
FUNCTION. HOWEVER, JUST AS IMPORTANT TO UNDERSTANDING A 

CELL’S STATE IS THE EPIGENOMIC PROFILE OF THE CELL. 

The epigenome is represented by a complex interplay of mechanisms, including DNA methylation, histone modifications and 
chromatin conformation, that control a gene’s expression (See Figure 1). Historically, these markers have been measured from 
bulk-sequencing, but we now understand that these metrics vary between individual cells and, consequently, the last decade 
has seen significant advancement in using these technologies for single cells. In this chapter, we will examine some of the 
methods to measure the epigenome at a single-cell level, and conclude with the big advance in this field, spatial epigenomics.

Why does the epigenome matter?
Sequencing epigenetic information is valuable for several reasons. If we are interested in cellular identify, then the set of 
transcription factors, chromatin conformations and RNA regulators are more persistent than RNA for determining cell 
fate. Ultimately, if you are interested in gene regulation and expression, epigenetic information (in either mono-omic or 
multiomics form) provides insights not possible to gain from RNA, DNA or protein alone. We asked experts in the field 
why the epigenome matters.

FIGURE 1. THE FOUR MAJOR 
EPIGENETIC LAYERS AND HOW TO 
PROFILE THEM.
(A) DNA methylation means the addition 
of a methyl group to certain bases in DNA. 
Methods for assessment of genome-wide DNA 
methylation are broadly categorized into 
bisulfite conversion-based, affinity enrichment-
based, and restriction enzyme-based techniques. 
(B) Histones undergo a variety of chemical 
modifications on their tail domains to affect 
DNA accessibility and subsequent expression. 
Methods for detecting these modifications rely 
on antibodies specifically designed to bind 
modified histone tails for immunoprecipitation 
with varying levels of resolution. (C) Genomic 
regions differ with respect to nucleosome 
occupancy and accessibility of DNA molecule 
to proteins. Various methods have been 
developed that quantify these characteristics 
across the genome. (D) Long-range interactions 
exist between regulatory elements across the 
genome. To identify and characterize them 
in a genome-wide fashion, various methods 
based on crosslinking and ligation have been 
developed with varying levels of coverage 
and specificity. Image and Caption Credit: 
Mehrmohamadi, et al.1
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FLG: Why is chromatin accessibility a 
valuable omic to study just by itself, 
and to include in multiomics studies 
alongside RNA and DNA?

Jason: Just like most areas of biology 
or in most areas of any other industry, 
people first start with broad exploration. 
Single-cell RNA-seq provides a broad 
survey of cell types, which gives a sense 
of the function of the cells. But, as soon 
as you start to generate that kind of data, 
you start asking some new questions, 
you want to validate your results. That's 
one thing to do, and having multiple 
omics technologies allows you to really 
validate that that cell type is a cell type. 
And I think that’s principally what most 
people use epigenomics for. The most 
common use case is  ‘I found this weird 
cluster or this weird edge of my cell type, 
is that a robust thing?’ Well, it should be 
robust in the epigenome space as well 
and it should have a unique epigenomic 
identity. If you see a cluster there as well, 
you can be feeling pretty confident. If you 
don't, it might be an artifact of your RNA 
measurement, which is still an issue for 
the field. 

So, that's kind of the vanilla answer, 
but for the nuanced answer, it allows 
you to do new things. One of them is to 
understand gene regulation, to build 
these interaction networks that say, this 
transcription factor, which we know 
encodes the identity of the cell, was 
expressed. That’s an RNA measurement. 
But we infer it to bind to these elements, 
that's a DNA measurement, because 
they're open and there's a sequence 
there that defines that interaction. 
Now, these elements, which are DNA 
elements, loop to a gene to activate 
gene expression, to create RNA. This 
kind of triangulation of functional units 
really allows us to understand not just 
what cells are, but also how we might 
push them to become healthy, or push 
them to create new identities, which is 
again the premise of therapeutics. In 
my mind, having the knowledge of why 
a cell is what it is, that’s going to be 
a cornerstone of manipulating those 
identities to help the disease, and so on 
and so forth.

FLG: What is the value of studying 
epigenomics alongside RNA?

Haiqi: This question can be applied 
to any multiomics really. The 
transcriptome is just one feature of a 
cell’s identity. It can reflect the cellular 
state to some extent, but how the 
genome of the cell is organised, how 
the epigenome is organised, and how 
they determine the cell fate is also 
super important. If people want to get 
a multifaceted view of cells, tissues or 
organisms, having those modalities 
would also be great.
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FLG: Do you think epigenome and 
transcriptome sequencing should 
become the standard way to profile 
the gene expression of cells now that 
technologies exist to profile both? If 
so, can you explain the added value of 
profiling chromatin?

Silvia: I don’t think there is a ‘standard’ 
way, since the most informative 
measurement will always depend on 
the question. Measuring RNA has many 
advantages, such as a high dynamic 
range and a defined set of genes to map 
to, which makes it easier to determine 
differential expression, annotate 

cell types etc. Chromatin profiling 
is especially useful when thinking 
about gene regulation, i.e., trying to 
understand which transcription factors 
(TF) are important for regulating or 
maintaining certain cell states. In 
addition, most GWAS SNPs fall into 
non-coding regulatory regions of the 
genome. Accordingly, measuring cell 
type-specific chromatin accessibility can 
help identify the cell types that certain 
variants are most likely to act in, as well 
as point towards potential underlying 
mechanisms of non-coding disease-
associated variants, e.g., if a key TF 
binding site is disrupted.
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Single-cell epigenomic methods 
A variety of methods exist for profiling single-cell epigenomic data. The depth and throughput capacities of these 
methods have only been improving2 (see Figure 2). However, the main challenges with single-cell epigenomics remain 
the same: high variability, low coverage per cell, limited throughput (total number of cells analysed from a sample) and 
high costs1. We will consider the major methodologies for each epigenetic layer in turn. 

SINGLE-CELL DNA METHYLATION ASSAYS
DNA Methylation is an important regulator of gene expression. It occurs when methyl groups are added to regions of the 
genome called CpG island. It is measured by bisulfate sequencing3. Early approaches, such as single-cell whole genome 
bisulfite sequencing (scWGBS-seq - Farlik, et al.4) and the reduced range version (scRRBS-seq - Guo, et al.5), used library prep 
methods to overcome the DNA loss caused by bisulfate sequencing to enable methylation reads from single cells. These 
early methods typically had high coverage of major CpG islands, but at low throughput and low coverage of sparse CpGs.

FIGURE 2. PUBLICATION DATES AND CELL NUMBERS OF SINGLE-CELL EPIGENOMIC METHODS.
Colour indicates epigenetic layer being profiled by each technology and symbol for single-cell isolation technology. Image credit: Bond, et al. 2
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Modern methods for DNA methylation, such as sci-MET6 and scCGI-seq7, use combinatorial sequencing to increase the 
throughput but at a lower coverage per cell. 

SINGLE-CELL HISTONE MODIFICATION ASSAYS
Modifications to histone proteins (the proteins that DNA is wound around) are known to regulate genomic 
characteristics and transcriptional states. Mapping these modifications is informative for understanding epigenetic 
programs and differentiation trajectories of cells. Classically, these modifications have been studied using chromatin 
immunoprecipitation sequencing (ChIP-seq), which uses antibodies that are specific to known histone marks. scChIP-
seq8 is the single-cell alternative, passing cells through micrococcal nuclease to reduce background noise and make the 
technique viable for individual cells. It is a high-throughput technique but at the cost of lower coverage per cell.

An alternative method, called CUT&RUN, involves chromatin immune-cleavage sequencing called scChIC-seq in single 
cells. It uses specific antibodies to target DNA-bound proteins and then cuts off the DNA to which the antibody is 
bound for sequencing. This allows a high number of reads per cell but at lower throughput. CUT&Tag addresses 
shortcomings of CUT&RUN by preventing DNA loss. scCUT&Tag9, the single-cell implementation, is fast becoming 
a popular method for this assessment in single cells. It has recently been expanded to scMulti-CUT&Tag10 and 
scCUT&Tag2for111 to allow for sequencing of multiple chromatin factors and for the active and repressive genomic 
elements respectively. A similar assay, scGET-seq12, also profiles whether chromatin is in an open and closed state to 
compute a new metric, chromatin velocity, which measures epigenetic plasticity of cells.

SINGLE-CELL CHROMATIN ACCESSIBILITY ASSAYS
Chromatin accessibility refers to the availability of DNA regions for regulatory proteins to bind and has many biological insights 
(see Figure 3). Methodologies such as DNAse-seq (and the single-cell equivalent scDNAse-seq) are used to measure this by 
using enzymes to fragment DNA regions without chromatin protection and inferring chromatin coverage based on sequencing 
the fragmented DNA. However, chromatin accessibility is dominated by one methodology with enhanced sensitivity - ATAC-
seq. This method uses Tn5 transposases, which only insert into open regions of the genome (without chromatin coverage) 
and fragments them. By sequencing just these fragments, it is possible to identify ‘open’ genomic regions. A single-cell 
implementation was released in 2015, sc-ATAC-seq13,  and is performed on isolated cells, which allows high read coverage but 
low throughput. However, a combinatorial form was later introduced, sci-ATAC-seq, which allows high throughput at the cost 
of coverage14. sci-Atac-seq3 is the most recent iteration of the technology, using a three-level combinatorial indexing assay to 
profile cells at extraordinary throughput and low-cost to allow chromatin profiling of whole embryos15.  

SINGLE-CELL NUCLEAR ORGANISATION
Finally, an appreciation of the 3D nature of genomic regulation is often lacking in epigenomic analyses. Chromosomes 
are folded into domains that can interact and chromatin regions from different chromosomes can interact too, allowing 
crosstalk between genetic elements across the genome. Learning about chromatin conformation can help understand how 
these changes are associated with gene regulation and cellular function. The predominant method to measure this higher-
order chromatin structure in single-cells, is a single-cell adaption of the Hi-C protocol. Like ATAC-seq, this was adapted to 
work on single cells in the conventional manner, scHi-C16, which is performed on isolated cells and has a low throughput, 
and in combinatorial form – sci-Hi-C17, which improves the throughput at the cost of depth. These methods are genome-
wide and rely on cross-linking and ligating physically interacting chromosome regions to identify interacting DNA domains.18

MULTIMODAL EPIGENOMIC METHODS
As of 2023, we are entering a situation in which combinations of all the previously detailed methods are available 
for multiomics sequencing. This is an area of rapid growth and detailed lists of all major multiomics methods exist19. 
Below we will outline some key tools combining epigenomics methods together or epigenomics with other omics.

Epigenomics has most often been coupled with transcriptomics. For example, DNA methylation can be co-profiled with RNA 
using scMT-seq20 and scM&T-seq21. Chromatin availability can be profiled with RNA such as with SNARE-seq22, Paired-seq23, 
SHARE-seq24 and ISSAAC-seq25. Chromatin accessibility can also be profiled with proteins using ASAP-seq26, which combines 
popular ATAC- and CITE-seq methods. Profiling histone modifications with scCUT&Tag has been paired with several other 
omics measurements such as transcriptome (CoTECH27 & Paired-tag28) and surface proteins (scCUT&TAGPro)29.

BEYOND THE GENOME. SINGLE-CELL AND SPATIAL EPIGENOMICS
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Epigenomic methods have also been paired together in multiomics form to create a more holistic epigenomic profile 
of individual cells. For example, scCool-Seq30 is a method that profiles DNA methylation and chromatin accessibility 
with a medium throughput and high coverage. The updated version, iscCOOL-seq31 improves that throughput further. 
Recent methods such as scNOMeRe-seq32 profiles the methylome, chromatin accessibility and the transcriptome. 

Nuclear organisation (HiC) has been paired with methylome profiling using methods such as scMethyl-Hic33 and snm3C-seq34.

Finally, methods exist to profile epigenomics alongside two other omics. This includes Neat-seq35, DOGMA-seq26 and 
TEA-seq36, which profiles chromatin, RNA and protein (the later focusing on surface proteins). ScTrio-Seq37 profiles 
the methylome alongside RNA and DNA. Finally, ScNMT-seq38, and the very recent scChaRM-seq39, profile chromatin 
accessibility, methylation and RNA.

Valuable lists of methodologies and advice for epigenomic and multimodal sequencing can be found in reviews from 
this year - Vandereyken, et al.19, Preissl, et al.40, Baysoy, et al.41.

Single-Cell Epigenomic Analysis
Single-cell epigenomic data is uniquely challenging to analyse, with its high dimensionality, sparsity, cell-cell variability 
and batch effects40. Unique computational tools exist for each of the major tasks (e.g. data processing, clustering and 
downstream characterization) and for each of the major epigenomic modalities. These go beyond the scope of this 
chapter, but an up-to-date overview can be found in Preissl, et al.40 and Heumos, et al.42.

Of general utility are the recent toolkits that encompass tools for several epigenomic computational tasks in one 
package tasks such as Signac43, SnapATAC44, ArchR45 and EpiScanpy46, which would be a good place to start to analyse 
single-cell epigenomics data. As with most forms of single-cell and spatial analysis, machine learning and neural 
networks are being deployed to enhance this analysis (see scBasset47 as a very recent example, which has been used 
to improve cell clustering, data integration and scATAC profile denoising).

Applications of Single-Cell Epigenomics 
Currently, single-cell epigenomic technologies are widely used to profile tissues during adulthood and 
development. The International 
Human Epigenome Consortium 
is leading the way in building 
single-cell epigenomic atlases to 
broaden our understanding of 
gene regulation in development, 
health and disease. 

Some impressive examples of 
this profiling include the human 
cell atlas of fetal chromatin 
accessibility15 using sci-ATAC-seq3 
to profile chromatin accessibility 
on ~800,000 cells (See Figure 3) 
and the adult chromatin atlas48 
with ~615,000 cells. Efforts to 
build DNA methylation atlases of 
humans49 have also been carried 
out this year. 
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FIGURE 3. OVERVIEW OF THE HUMAN CELL ATLAS OF FETAL CHROMATIN 
ACCESSIBILITY.
15 fetal organs were processed using sci-ATAC-seq3 allowing 800,000 cells to be profiled 
providing insights int disease heritability and dynamics. Image Credit: Domcke, et al.15
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Single-cell epigenomics also has a lot of promise for research into disease states. Tumour biology, in particular, is a 
complex heterogenous biological system. Epigenomic methods provide necessary delineation to help understand 
cancer clonal heterogeneity, tumour microenvironment interactions and the epigenetic programs of malignant tumour 
cells undergoing growth or metastasis (See Figure 4) 50,51. Clinically, this would enable the discovery of new biomarkers, 
early detection of metastasis, and help to tailor personalized therapies. We asked our contributors what the clinical 
value of epigenomic profiling was.

BEYOND THE GENOME. SINGLE-CELL AND SPATIAL EPIGENOMICS

FLG: If someone was to take up sci-
ATAC-seq3 for the first time, are there 
any unique challenges/things to be 
aware of?

Silvia: The key challenge with sci-
ATAC-seq3 is that there is some loss of 
material during the protocol due to the 

centrifugation steps, and accordingly it is 
not the method of choice for very limited 
samples that require a near perfect 
nuclei recovery. But if you start with 
a sufficient amount of input material, 
don’t be too discouraged if you can’t see 
your nuclei pellet in the process – they 
will still be there in the sequencing!  

SILVIA DOMCKE 
Affiliate Assistant Professor, Dept. 

of Genome Sciences 
University of Washington 
Associate Director, Head of 

Human Genomics 
Gordian Biotechnology 

“THE KEY CHALLENGE WITH 
SCI-ATAC-SEQ3 IS THAT THERE 
IS SOME LOSS OF MATERIAL 

DURING THE PROTOCOL"

FIGURE 4. SINGLE-CELL AND SPATIAL EPIGENOMICS AND CANCER. 
Left. There are six different aspects of cancer for which epigenomic methods can provide much needed information. Right. Examples of single-
cell and spatial technologies to study the different epigenetic mechanisms of cancer. Image Credit: Casado-Pelaez, et al.50

“EPIGENOMIC METHODS PROVIDE NECESSARY DELINEATION TO HELP 
UNDERSTAND CANCER CLONAL HETEROGENEITY, TUMOUR 
MICROENVIRONMENT INTERACTIONS AND THE EPIGENETIC PROGRAMS 

OF MALIGNANT TUMOUR CELLS UNDERGOING GROWTH OR METASTASIS"
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FLG: What is the clinical value of 
profiling chromatin accessibility?

Jason: Like most things, when you think 
about the clinic, technologies have to 
be pretty mature before they go into the 
clinic. And I think right now, a lot of the 
examples that we have are early stage 
and proof of principle. But in the near 
future, I really imagine that epigenomics 
might be used for diagnostic purposes. 
For example, this tumour is a ‘really 
bad’ tumour because it has an invasive 
signature, or even my immune system 
is healthy, but somebody else's might 
have an autoimmune disease, and 
there’s a signature associated with it. 

Of course, some of that can be done 
with other genomic technologies, but I 
do think that the epigenome, as we've 
seen in other examples, is a really 
robust measurement of what the cell 
is doing and also tends to tell us a 
lot about what the cell might do in a 
future challenge. Hence you tend to 
see in many examples that there are 
signatures that are really robust on 
the epigenome but are hard to nail 
down using transcriptomes. One great 
example of this is T cell exhaustion. 
There's a really well defined ATAC-seq 
signature associated with exhaustion, 
but it can be challenging to define the 
transcriptome signature.

JASON D. BUENROSTRO 
Associate Professor & Broad 

Institute Member 
Harvard University & Broad 

Institute of MIT and Harvard

FLG: Is there clinical value to 
chromatin profiling?

Silvia: Chromatin profiling can 
help prioritize non-coding disease-
associated variants for further 
investigation of disease mechanisms 
or to identify potential therapeutic 
targets. It can help nominate 
transcription factors that might be 

causally involved in various diseases 
as well as derive gene regulatory 
networks underlying disease states. 
Currently its use case is likely 
more focused on learning the gene 
regulatory relationships underlying 
disease states per se by profiling 
cohorts of diseased and normal 
samples, rather than as a per-patient 
standard readout in the clinic.

SILVIA DOMCKE 
Affiliate Assistant Professor, Dept. 

of Genome Sciences 
University of Washington 
Associate Director, Head of 

Human Genomics 
Gordian Biotechnology 
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Spatial epigenomic methods
A significant advance in the epigenomic space in 
the last 12-18 months has been the blossoming of 
spatial epigenomic methods to profile chromatin 
accessibility and histone modifications.

Two significant early methods in this space were 
Spatial-ATAC-seq52 and Spatial-CUT&Tag53. These 
methods rely on the original CUT&Tag and ATAC-
seq chemistry but capture that information with a 
spatial resolution of 20µm. 

The Spatial-ATAC assay allows unbiased genome-wide mapping of chromatin accessibility and has been used to profile 
chromatin in the whole mouse embryo to identify spatial organization of cell types as well as their states and fates53. 

SpatialCUT&Tag provides a targeted approach, visualizing spatial histone modifications using specific antibodies. This 
provides insights into protein-DNA interactions, transcription factor binding, and the epigenetic modifications linked 
to the targeted proteins. This can provide a more granular understanding of epigenetic biomarkers of disease and 
histone modifications controlling chromatin structure.

Alternative methods exist for histone modifications, such as epigenomic MERFISH54, an imaging based method that 
combines the CUT&Tag methodology with MERFISH. This method achieves remarkable subcellular resolution (see 
Figure 5) and has been used to identify new promoter-enhancer hubs in the mouse brain. However, this method lacks 
the unbiased nature of the above methods, requiring prior knowledge to select epigenomic loci. 

Subcellular resolution has been achieved for another technique, Photoselective Sequencing (PSS)55, which can 
profile subcellular regions. PSS is a cost-effective and simple technique using light microscopy to profile chromatin 
accessibility for specific selected regions of tissue. This approach was spear-headed by Sarah Mangiameli, but we 
caught up with one of the authors of PSS manuscript, Dr. Haiqi Chen, to hear more about PSS.
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FIGURE 5. OVERVIEW OF EPIGENOMIC MERFISH. 
This technique allows the visualisation of epigenetically modified DNA at 
subcellular and tissue level resolutions. Image Credit: Lu, et al.54
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Finally, 3D genome organisation has also been captured spatially. 
Methods relying on fluorescence such as DNA-MERFISH56, DNA-
seqFISH+57 have the ability to profile 1000s of genomic loci allowing 
for the characterization of chromatin domains and chromosomal 
interactions. OligoFISSEQ58 is another alternative. It uses in situ 
sequencing methods, which allow for higher throughput but with 
fewer possible targets. 

All methods can only probe a limited amount of the genome, and 
it is hoped these methods can be expanded to chart 3D genome 
variability across thousands of cells in healthy and diseased tissues 
and organs in different species to find variable features of 3D 
genome organisation.18

BEYOND THE GENOME. SINGLE-CELL AND SPATIAL EPIGENOMICS

FLG: How does Photo-Selective 
Sequencing (PSS) work? What can it 
be used for and why might someone 
choose to use PSS over other similar 
approaches for profiling the genome 
or epigenome?

Haiqi: The tool was initially developed 
to address a question - how do 
you obtain spatial information of 
DNA sequences, especially DNA 
sequences associated with epigenomic 
modifications? Next generation 
sequencing is powerful because it 
can get sequence information in a 
very high throughput fashion, but you 
don't have the spatial information. 
And in the meantime, high resolution 
imaging, like microscopy, is really 
powerful in terms of achieving high 
spatial resolution, especially at the 
sub cellular level, but without getting 
the sequence information of the 
genome. So, we (Sarah Mangiameli 
and others from the Labs of Fei Chen 
and Jason Buenrostro at Harvard) 
thought, what if we can combine those 
two technologies together and get 

both the spatial context 
as well as DNA sequence 
information? That's how 
PSS was born. Basically, 
you use microscopy to 
image cells within intact 

tissue sections at the sub-cellular 
resolution, and you use laser with a 
diffraction limit at a nanometre scale, 
to spatially select DNA that you're 
interested in (say cells in a specific 
location or a specific region within a 
cell) and only sequence that selected 
DNA. That's the whole idea of PSS.

PSS really comes into address the 
accessibility challenges associated 
with a lot of current spatial 
technologies that require specialized 
instruments because you only need 
a modern-day microscope, which 
most lab or most core facility 
have, and also a FRAP module, 
which is something that is used 
for fluorescence recovery after 
photobleaching, which is a very 
standard assay that people use in the 
imaging core. No other specialized 
equipment is required. And sample 
preparation is simple enough that 
all you need are enzymes called Tn5 
transposases and some DNA oligo 
adapters that allow you to photo-
cleave cells. So, relatively easy to use 
and not very expensive if you have 
a core facility that already have a 
microscope and the FRAP module, and 
it has some stellar resolution, which 
I think most technologies cannot 
provide at this point.”

HAIQI CHEN 
Assistant Professor 

UT Southwestern Medical 
Centre

“SPATIALCUT&TAG-
RNA-SEQ AND 

SPATIAL-ATAC&RNA-
SEQ WERE 

SUCCESSFULLY 
APPLIED TO 

DEVELOPING MOUSE 
AND ADULT HUMAN 
BRAINS, REVEALING 

GENOME-WIDE 
GENE REGULATION 

MECHANISMS IN 
A SPATIAL TISSUE 

CONTEXT.
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FLG: What is the value of viewing the 
epigenomic spatially? And what are your 
hopes for this approach?

Jason: There are two categories of 
methods and I’ll just disentangle them a 
little. Category one is where you're looking 
within a cell’s spatial structure. So, you 
might be interested in asking where those 
DNA Elements are spatially located within 
the cell. And that's super important. 
That's what PSS (Photoselective 
Sequencing) allows you to do. Because 
you're able to now know more about 
the function of our genome. By knowing 
these two elements of DNA are touching 
or interacting, we can now paint a clearer 
picture as to what those elements are 
doing. So, that's one category. And that's 
what we've been mostly pioneering. And 
we've been very excited to do. The other 

category is to understand epigenomes in 
a tissue context. You might be interested 
in asking how this cell's epigenome, or 
the cell in general, interacts with that 
other cell. And by understanding those 
interactions, it gives you a much better 
sense of functional units within our tissue. 
This nerve cell is interacting with this 
fibroblast. That's probably important for 
the functioning of that fibroblast. Now, 
let's understand that circuit better. So, 
spatial epigenomics will tell us a lot about 
how our individual cells and our cell types 
interact to form functional units, that 
then drive unique outcomes. So, spatial 
is useful for figuring out the cell type, and 
then really making sure that that's real. 
But also, it’s telling you what the cells 
might do in response to being pushed, 
and being able to build gene regulatory 
networks, and these sorts of things.

JASON D. BUENROSTRO 
Associate Professor & Broad 

Institute Member 
Harvard University & Broad 

Institute of MIT and Harvard

CO-PROFILING THE EPIGENOME AND TRANSCRIPTOME 
In March 2023, SpatialCUT&Tag-RNA-seq and Spatial-ATAC&RNA-seq were published59. These methods provide an 
exciting spatial multiomics methodology to simultaneously profile chromatin accessibility or histone modifications 
alongside RNA. These methods are hi-plex with a respectable 20µm resolution. 

SpatialCUT&Tag-RNA-seq and Spatial-ATAC&RNA-seq were successfully applied to developing mouse and adult human 
brains, revealing genome-wide gene regulation mechanisms in a spatial tissue context59. They identified a new cluster 
of neurons not identified by RNA or ATAC-seq alone. Using a pseudo-time series to map chromatin to gene expression, 
it was possible to identify loss of chromatin accessibility and expression of genes across time. 



The Spatial and Single-Cell Analysis Playbook 64

This shows that to truly understand gene expression in individual cells, these different layers of molecular information 
are needed. The authors of the paper state, ‘In summary, spatially resolved, genome-wide co-sequencing of 
epigenome and transcriptome at the cellular level represents one of the most informative tools in spatial biology and 
can be applied to a wide range of biological and biomedical research.' We asked Dr. Yanxiang Deng about this method.
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Yanxiang: These new spatial 
technologies can simultaneously 
spatially map two crucial components 
of our genetic makeup, the epigenome 
and the transcriptome. The epigenome 
controls the switching mechanisms 
that turn genes on and off; the 
transcriptome is the result of those gene 
expressions and is what defines the cell. 
The co-profiling strategy enabled us to 
see the mechanisms of how the genes 
are regulated or switched on and off in 
the tissue context.

YANXIANG DENG 
Assistant Professor 

University of Pennsylvania

Furthermore, the authors observed an interesting discordance between genes whose chromatin was ‘active’, but for 
which limited RNA was found (See Neurod6 in Figure 6). This subset of genes was seen as ‘primed’ for expression 
presenting another unique marker to explore in health and disease. 

FIGURE 6. CO-PROFILING OF EPIGENOME AND TRANSCRIPTOME IN P22 MOUSE BRAIN.
Top. Spatial distribution and UMAP of all clusters for ATAC and RNA in spatial ATAC–RNA-seq of mouse brain. Pixel size, 20 µm; scale bars, 1 mm. 
Bottom. Spatial mapping of gene activity scores and gene expression for selected marker genes in different clusters for ATAC and RNA in spatial 
ATAC–RNA-seq. Image Credit: Zhang, et al.59
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CHAPTER 6

BEDSIDE BENEFITS. SINGLE-CELL AND 
SPATIAL IN CLINICAL PRACTICE

HOW DO WE LEVERAGE THESE POWERFUL TECHNOLOGIES FOR 
CLINICAL BENEFIT? THIS IS A PERTINENT QUESTION TO CONSIDER AS 
THESE TECHNOLOGIES MATURE. IN THIS CHAPTER WE WILL REVIEW 
SOME OF THE LATEST APPLICATIONS OF SINGLE-CELL AND SPATIAL 

TECHNOLOGIES TO UNDERSTAND DISEASE, WHETHER THAT’S USING 
THESE TECHNOLOGIES TO FIND NEW BIOMARKERS, TO UNDERSTAND 
WHY TREATMENTS DON’T WORK OR EVEN FOR EARLY DETECTION AND 
DIAGNOSIS. WE WILL DISCUSS THE PROMISES AND THE CHALLENGES 

OF BRINGING THIS TECHNOLOGY TO THE CLINIC.

Single-cell technologies in the clinic
As we have seen in Chapter 1, single-cell sequencing technologies have been undergoing rapid development for more 
than a decade. As a consequence, these technologies are much closer to clinical translation than spatial. Figure 1 
displays some anticipated benefits of these technologies, some of which are already occurring!

FIGURE 1. ANTICIPATED BENEFITS OF INTEGRATING SINGLE-CELL SEQUENCING INTO CLINICAL PRACTICES. 
These include. (A) The early detection of cancer by applying to circulating tumour cells. (B) Predicting immunotherapy response and toxicity 
through cellular genomic signatures of specific immune cell subsets. (C) Identifying immunotherapy resistance through selective transcriptional 
loss of targeted HLA. (D) A range of applications in clinical trials. (E) Improved diagnostics through approaches such as patient stratification. 
(F) Identifying novel therapeutic targets through profiling subsets of cell types. (G) The monitoring of the evolution of cancer by deep profiling of 
circulating tumour cells. Image Adapted From: Lim, et al.1
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Current barriers to bringing single-cell to the clinic
To achieve clinically-actionable single-cell methods, three major developments are needed1. 

Firstly, we need to see the standardisation of tissue collection in the clinic in a way that protects the omics data 
of individual cells. Most single-cell technologies require live cells. This means that clinics need to invest in the 
necessary equipment to enable quick cell capture following fresh tissue biopsy. This will require a shift away from the 
clinical standard - formalin fixation for long-term storage. A fresh biopsy process needs to be simple and should occur 
on samples within hours of biopsy and followed by cryopreservation for storage2. 

There is already a wealth of formalin fixed and FFPE tissue samples collected from routine clinical practice. Being able to utilise 
these samples with modern single-cell technology is a challenge that is much closer to being addressed. There has been a 
recent influx of commercial and academic solutions to make use of the FFPE-based tissue samples collected routinely in clinical 
scenarios. 10x Genomics produced a Flex kit, which allows FFPE and fixed samples to be run on the Chromium X Series. 

In academia, methods to isolate nuclei from FFPE tissues were reported last year, such as snPATHO-Seq3 and snFFPE-
seq4. These allow single nucleus sequencing, but lack sensitivity to detect low-quality RNA. Earlier this year, snRandom-
seq5 was developed, allowing full-length snRNA sequencing in FFPE tissues, opening the door for high-level single nuclei 
profiling of FFPE clinical samples. New solutions also released this year, such as FixNCut6, allow for reversible fixation of 
tissues, meaning cells can be preserved at collection and analysed later without artefacts or RNA degradation. 

The second development that we need for clinically actionable single-cell methods is the introduction of cost effective 
sequencing platforms with high specificity, sensitivity and throughput. Some platforms already meet these 
criteria, with high profile platforms from 10x Genomics and Mission Bio emerging in clinical labs, but there is still 
extremely limited accessibility. Affordable instrument-free approaches may provide a solution to the cost-effectiveness 
problem, but overall technological development is heading in the right direction.

Thirdly, we need standardised, user-friendly, bioinformatic approaches that yield clinically interpretable 
findings7. The current bioinformatic pipelines are robust but most areas of analysis are still undergoing enhancement, 
and there is disagreement over the gold standard (see Chapter 7). However, the road to identifying a gold standard is 
shortening, and the development of reference atlases and the algorithms to use them (see Chapter 3) will help make 
cell identification faster and more robust8. 

Other issues also need addressing. For example, the outcomes of these single-cell assessments need to be reported in 
a clear and concise manner for understandable and interpretable insights9. 

The promise of spatial technology
As a younger technology, the current spatial methods are even less well utilised in clinical labs, but they have a lot 
of promise to redefine medicine as we know it (see Figure 2). Pathology is a principal diagnostic tool for clinical care 
and is gold standard to guide the treatment and prognosis of cancer10. However, cancer, among other diseases, is 
intensely heterogenous11. To combat this heterogeneity, new diagnostic methods that assay multi-dimensional clinical 
biomarkers (i.e., multimodal genomic measurements in space and time) are necessary to truly assess these conditions.

While single-cell technology can provide deep genomic profiling, the persistence of histological pathology shows how 
important measurements of space are to diagnosis. Hence, modern spatial technology presents the first set of tools 
with the potential to truly meet that multi-dimensional biomarker standard, able to quantify the levels of different 
omes in space and even across time. This could create a medical paradigm in which personalised spatial signatures 
are a powerful diagnostic and treatment-selection tool. Figure 3 highlights a selection of enhanced metrics that can be 
acquired from spatial transcriptomic data as opposed to classical histology. 

https://www.10xgenomics.com/products/single-cell-gene-expression-flex
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Furthermore, if we can associate spatial signatures with clinical metadata (i.e., survival, prognosis, treatment response), we will 
likely be able to predict clinical outcomes from a very early stage of disease12. As one recent review summarised - “An end-to-
end solution of spatiotemporal omics with satisfactory reproducibility, sensitivity, throughput, and price will assist physicians 
in making accurate diagnoses, determining an effective treatment, avoiding wasting time, and minimizing toxic impact. 
Breakthroughs in precision medicine can be expected to improve care delivery, health outcomes, and quality of life.”10

Challenges still remain
Spatial methodologies still have a number of challenges that need addressing before clinical adoption. There are still a 
plethora of spatial technology options that have limits on the size of tissue section that can be analysed, the number of 
molecular markers and the spatial resolution of these markers. This variability means that choosing the technology to 
adopt in a clinic to handle many different sample types is challenging.

As with single-cell technologies, tissue acquisition is also a barrier to wide adoption of spatial technologies. Leading spatial 
technologies are trying to make use of the current histological workflow, allowing spatial solutions on FFPE sections at typical 
thicknesses. Again, as with single-cell, cost, time and throughput are all problematic for the adoption of spatial technologies. 

Biologically, the stability and reproducibility of spatial transcriptomic profiles also needs to be confirmed before 
confident clinical diagnoses can be made from spatial microenvironment analyses13. How tissue microenvironments 
and cell-cell communication strategies can be impacted by differences in disease complexity, stage, severity and 
pathology has not yet been confirmed.

We asked some of our contributors what they thought about spatial technology being adopted into the clinic, and 
some of the barriers that might slow progression.

FIGURE 2. HOW SPATIAL 
BIOLOGY COULD CHANGE THE 
FUTURE OF PATHOLOGY. 
Historical pathology (19th century) has 
relied on histomorphology assessment 
of classical stains such as H&E. Modern 
(21st century) pathology is now 
molecular, using companion diagnostics 
such as immunohistochemistry, FISH 
and NGS to sort patients into eligible 
treatment groups. Modern spatial 
technology promises a future of precision 
medicine, in which multimodal spatial 
signatures can be used to allocate 
personalised treatments to individuals. 
Image Credit: Zhang, et al.10 

FIGURE 3. DIFFERENT 
INSIGHTS GAINED FROM 
SPATIAL TRANSCRIPTOMICS 
COMPARED TO 
HISTOMORPHOLOGICAL 
PATHOLOGY. 
Spatial signatures would allow 
the identification of different 
pathological cell states, the landscape 
of the immune TME (iTME) and for 
spatiotemporal intracellular crosstalk 
analysis. This is compared to the 
restricted morphological and prognosis 
information that can be gained from 
standard pathology workflows. Image 
Credit: Zhang, et al.10
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FLG: Do you see spatial technology 
making its way to the clinic eventually? 
Perhaps performing real time 
assessments of tumour samples?

Jared: I do. If we just look at 
immunotherapies, at the moment, a 
lot of them fail. And we're not always 
clear, on the clinical side, why they fail. 
And I believe they fail because the right 
immune cell is not in the right location 
to be stimulated to perform its role 
better. Or, there's an M2 macrophage 
that's immunosuppressive but the 
tumour has proactively surrounded 
itself with mechanisms to evade 
immune cells, so it’s going to nullify 
it when it gets there. If we better 
characterised these patients, could we 
better prescribe either a combination 
therapy or a staggered therapy, where 
we try to first take out some of these 
hostile cells or hostile environments, 
and then later come in with an 
immunotherapy once that's optimised.

I think we are at a point in pathology, 
which we were at with surgery a few 

years back, when all these robotics 
and lasers and other high-tech gadgets 
entered the surgical suite. We're entering 
a very computer-based and AI tool 
pathology, and that's not the way we've 
been training our pathologists. So, 
they're very uncomfortable with what 
we're showing them. They're so used to 
seeing what’s in the tissue through the 
microscope lens and judging it all by eye. 
And now they're having to depend upon 
that camera, and a particular monitor 
and a whole bunch of things that they 
don't even know how to standardise. 
For example, if they go to a different 
monitor, do they see it the same way? 

So, there's a lot of nuance, and we've 
got to figure that out. But I think that 
this is going to come to the clinic 
through companion diagnostics with 
pharmaceuticals. And then ultimately, 
the patients are going to start 
demanding it because they're reading 
the journal articles. They're coming in as 
informed as possible because their life's 
on the line; trying to figure out what's 
best for them so they can self-advocate.

JARED K. BURKS 
Professor & Co-Director, Flow 

Cytometry & Cell Imaging Core 
Facility 

The University of Texas MD 
Anderson Cancer Centre

FLG: I wanted to ask you about the 
translational aspects of your work. 
What are the clinical applications 
you are working on and what are the 
challenges that you're finding in terms 
of actually getting spatial technology 
into the clinic? 

Denis: For the last two years, my group 
in Heidelberg has been focusing on 
spatial technologies in the context of 
oncology, but also now extending to 
immunology, as well as cardiology and 
other disease types. 

The key challenges we are currently 
working on are experimental design 
strategies as well as workflow 
standardization. E.g., do we need a 

tissue microarray, or do we require 
whole slide images? How many 
patients, samples, images and cells 
do we need to have enough statistical 
power? And what technology should 
we use for each question that we 
have? I think that's really critical. 
The other part is, we want to stay as 
close to the routine applications as 
possible without disrupting them. 
Ideally, we would work either on a 
consecutive tissue section or even on 
the same section, so the pathologists 
can continue doing their routine 
diagnosis. This would enable us, in 
parallel, to provide an additional layer 
of information. Hopefully this will help 
us to move spatial omics technologies 
closer to patient care. u

DENIS SCHAPIRO 
Research Group Leader 

Heidelberg University Hospital
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Can AI lend a helping hand?
One barrier to the adoption of both single-cell and spatial technologies is the difficulty and time-consuming nature of 
performing the downstream analysis to produce useful clinical insights. Parallel to the radical developments in single-
cell and spatial technology is the rapid expansion of AI algorithm development to analyse the data produced by these 
tools14. In Chapter 7, we will take a deeper look at the advancement of AI tools in single-cell and spatial biology.

Since it will be difficult to directly use spatial technology in the clinic in the near future, AI presents alternative options. 
One promising avenue has been to develop machine learning algorithms that can predict single-cell and spatial 
transcriptomic features using an image that is routinely taken in the clinic, a H&E-stained image. These algorithms are 
trained on H&E and single-cell and spatial transcriptomics data of the same tissue and have had success in relating 
spatial transcriptomic features to H&E images with tools such as SCHAF15, BLEEP16 and MOMA17. Figure 4 displays the 
workflow for BLEEP as an exemplar. This approach could be used as a high throughput technique to quickly identify 
samples with morphological features that are suggestive of pathology. We spoke to Dr. Mai Chan Lau, who’s work 
specialises in clinical applications of AI, machine learning and spatial omics.

In terms of data analysis challenges, I think the key here 
is thinking about what Quality Control steps do we need? 
How do we know our analysis works and how can we do 
this with minimal human intervention? How do we control 
for variations in our experiments? What are the internal 
controls? Also, how do we automate the individual steps to 
the extent that, one day, we can just run it and only check 
the Quality Control report if required? 

FIGURE 4. WORKFLOW FOR BLEEP, A METHOD TO PREDICT 
SPATIAL EXPRESSION PROFILES FROM H&E IMAGES. 
(A) BLEEP learns a bimodal embedding from expression profiles and H&E 
image patches, (B) image queries are projected into the joint embedding 
space to index the k nearest reference expression profiles, and (C) the indexed 
reference expression profiles are linearly combined to produce the imputed 
gene expressions for queries. Image and Caption credit: Xie, et al. 16

“IDEALLY, WE WOULD 
WORK EITHER ON A 
CONSECUTIVE TISSUE 

SECTION OR EVEN ON THE SAME 
SECTION, SO THE PATHOLOGISTS 
CAN CONTINUE DOING THEIR 
ROUTINE DIAGNOSIS."
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FLG: What value do you think AI brings to the clinic?

Mai Chan: AI has become increasingly vital for various 
applications, including the analysis of high-dimensional, 
large-scale, multi-omics, and spatial omics data. It's also 
instrumental in building predictive models. Although we 
haven't yet reached the point where AI can offer spatial 
predictions that lead to clinically actionable insights, 
progress is being made in that direction.  At present, 
the clinical applications of AI are predominantly found 
in fields like radiology and cardiology, especially in the 
analysis of CT scans and X-ray images. This prevalence is 
mainly because these fields have access to a vast number 
of training images. In contrast, spatial omics technologies 
lack such extensive data, largely due to their high costs, 
specialized technical needs, and the invasive requirement 
for resected tissues. So, while we are some distance away 
from the desired outcomes, the future looks promising, 
and we are headed in the right direction.  

FLG: What are the challenges of bringing AI to clinic?

Mai Chan: Acquiring sufficient and high-quality data 
is often the most significant challenge in training 
robust AI models. The data must be both diverse and 
representative to enable the model to generalize to new, 
unseen situations. This task is complicated not only by 
resource limitations but also by ethical considerations 
surrounding data collection and use. Especially in 
Singapore, the clinical trial cohort size is usually quite 
small, at most close to 100. For AI training, we require 
huge amounts of data. However, emerging AI approaches 
could help address such issues, such as semi-supervised 
training models that require less ground truth for model 
training as well as generative approaches to generate 
simulated data to help increase the data size. 

FLG: What is the promise of AI for spatial omics and 
the clinic?

Mai Chan: AI and spatial omics are rapidly emerging 
fields. The marrying of these fields will accelerate the 
future of precision medicine.

FLG: And this would allow the power of spatial omics 
to reach people in the clinic in real time?

Mai Chan: Yes, and I think the key is to leverage the 
Hematoxylin and Eosin (H&E) stained and digitized 
images which are abundant. That's why our team at 
A*STAR is focused on developing H&E-based models that 
can predict (multiple) spatial omics signals. By obtaining 
a good prediction from H&E, we can do retrospective 
analysis to find robust biomarkers. This approach will 
allow us to examine a larger sample size compared to 
costly technologies which typically analyse only 10 to 
20 samples. One ongoing project is the creation of a 
web-based visualization tool that enables users to view 
molecular markers within H&E-stained tissue. The tool is 
still in development and can be accessed at https://mspc.
bii.a-star.edu.sg/minhn/he2.html.

MAI CHAN LAU 
ASSISTANT PRINCIPAL 

INVESTIGATOR
A*STAR’S BIOINFORMATICS 

INSTITUTE (BII) AND 
SINGAPORE IMMUNOLOGY 

NETWORK (SIGN)

INTERVIEW: 

“SPATIAL OMICS 
TECHNOLOGIES LACK SUCH 
EXTENSIVE DATA, LARGELY 

DUE TO THEIR HIGH COSTS, 
SPECIALIZED TECHNICAL 

NEEDS, AND THE INVASIVE 
REQUIREMENT FOR RESECTED 

TISSUES."
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https://mspc.bii.a-star.edu.sg/minhn/he2.html


The Spatial and Single-Cell Analysis Playbook 73

BEDSIDE BENEFITS. SINGLE-CELL AND SPATIAL IN CLINICAL PRACTICE

Single-cell and spatial technologies vs. disease heterogeneity
Individuals differ in how their disease presents, how it evolves and how treatment affects it. This heterogeneity is a huge 
problem for clinicians. As already discussed in this chapter, single-cell and spatial technologies are currently broadening 
the selection of biomarkers that are available for diseases. Hence, these technologies present an opportunity to 
classify disease heterogeneity by simultaneously profiling this selection of biomarkers. Here we will review some recent 
examples of how single-cell and spatial methods have provided insights into heterogenous disease.

CANCER AND THE TUMOUR MICROENVIRONMENT (TME) 
How spatial and single-cell methods are providing insights into cancer has been covered throughout this report. 
Tumours are notoriously heterogeneous, and this leads to misdiagnosis and misidentification of tumour margins. As 
a tour de force of the single-cell efforts to characterise cancer cells, a 2023 study collated data on over 1,000 tumours 
and identified hallmarks of intratumour heterogeneity18. They revealed gene expression programs that are co-
ordinately upregulated in subpopulations of cells within many types of tumour. It is a pan-cancer single-cell resource, 
which each new tumour sample can be compared to. 

However, the TME is a spatial entity and the work going into deconvoluting it is truly an incredible demonstration 
of the power these technologies can have for clinical diagnoses. A summary of how spatial biology is helping to 
understand the TME has already been discussed in Chapter 4. 

Spatial biomarkers of the TME will be an unparalleled resource to diagnosticians concerning cancer stage and evolution19. 
For example, a combination of pan-cancer single-cell analysis and spatial transcriptomics identified recurrent gene 
expression programs for cancer cell states, such as immune suppression and angiogenesis, which could inform disease 
state20. Another example saw hi-plex 3D CyCIF technology used to identify unique biomarkers for different stages of 
melanoma development21. Figure 5 shows that the localisation of cytotoxic T-cells to melanocytes and the expression of 
markers of T-cell exhaustion and Pdl1+ macrophages distinguished the different stages. This combination of expression 
and protein markers located in space is exactly the kind of precise biomarker that clinicians need to tackle heterogeneity.

INFLAMMATORY BOWEL DISEASE (IBD)
Disease such as ulcerative colitis and Crohn’s disease are perplexingly heterogeneous. Single-cell and spatial 
technologies present an immensely valuable tool for addressing this. Hence, there is an influx of data and approaches 
to help us understand diseases of the gut. For example, this year has seen the release of several single-cell atlases 
of the gut22-24. These studies have found unique gene expression in inflamed vs. non-inflamed tissue in patients and 
unique changes in the small and large intestine. 

FIGURE 5. SCHEMATIC OF 
THE REMODELLING OF 
THE MELANOMA TME AS 
THE DISEASE PROGRESSES 
WITH SPATIAL/GENOMIC 
FEATURES THAT 
DISTINGUISH THE STAGES.
Image Credit: Nirmal, et al.21
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Spatial transcriptomics adds another layer of understanding to the gut25. One extremely recent example combined the 
power of single-cell and spatial technology to understand the inflamed gut in IBD26. Single-cell technologies identified 
macrophages and neutrophils as the major cell type differing between patients and controls. Nanostring CosMx was 
used to spatially locate the macrophage and neutrophil subsets and further classify the disordered macrophages 
on a spatial dimension. In conclusion, the authors state that “intestinal macrophages, which sense changes in the 
microenvironment, could act as reliable indicators of patient-specific molecular patterns and thus, promising targets”26.

We reached out to the senior author, Dr. Azucena Salas, who recently presented her work at a Front Line Genomics 
webinar, to discuss the additional benefits of merging single-cell and spatial technologies in her work on IBD.

AUTOIMMUNE DISEASE’S
Autoimmune disorders are caused by abnormal immune regulation or deficiencies which damage host tissue. The 
complicated nature of the disease and difficulties with diagnosis and disease monitoring mean there are a number of 
insights to gain using single-cell methodologies27. Conditions such as Multiple Sclerosis, Vitiligo, endometriosis and the 
IBD’s discussed above have all had new insights gained from single-cell and spatial methods28. 

We will focus on one disease. Rheumatoid arthritis (RA) is a common autoimmune disease affecting ~1% of the 
population. It is characterised by inflammation in the synovium of joints, leads to loss of cartilage and bone and 
ultimately pain and disability28. 

Spatial technologies have been used to study the synovium microenvironment in patients with RA, finding spatial 
patterns of leukocyte infilration29. Combined single-cell and spatial transcriptomics found unique B cell populations 
in the joints of early RA patients30. Finally, a multimodal approach using CITE-seq and histology of 79 donors has 
recently enabled researchers to construct a single-cell RNA synovial cell atlas31. This resource found six unique cell type 
abundance phenotypes in patients, showing the RA’s heterogeneity can be captured at the cell population level. 

Azucena: Here we combined spatial and 
single-cell RNA-seq from IBD patients, 
which I think is particularly helpful 
when you want to distinguish rare cell 
types that are not very transcriptionally 
distinct from other cell types. Those cell 
types or states may not be revealed 
by the spatial data alone, which may 
measure reduced gene sets compared to 

scRNA-seq. So, you can, I think, provide 
more resolution to these spatial data 
sets. By combining these two datasets, 
not only do we validate that diverse 
macrophage populations are found in 
the tissue, but also, by placing them in 
tissue structures we can understand a 
little bit more about their role, and their 
potential crosstalk to other cells.  

AZUCENA SALAS 
Inflammatory Bowel Disease 

Group leader 
Fundació de Recerca Clínic 

Barcelona-IDIBAPS, Hospital 
Clínic Barcelona

“THOSE CELL TYPES OR STATES 
MAY NOT BE REVEALED BY THE 
SPATIAL DATA ALONE, WHICH 

MAY MEASURE REDUCED GENE SETS 
COMPARED TO SCRNA-SEQ."
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NEUROLOGICAL DISORDERS - ALZHEIMER’S DISEASE
The brain is an immensely complex tissue, made up of neurons and supporting cells. Subtle variations in the genomic 
profiles of these cells can create radically different functions. Given that the organ is intensely heterogeneous, 
understanding neurological disorders is equally complex. It is not possible to cover all the value that single-cell and 
spatial technology has for deciphering the brain in this report, but it is covered in depth in this 2023 review32.

Figure 6 shows some key studies using single-cell technologies to understand neurological disorders. Alzheimer’s disease has 
been a point of focus amongst these disorders. Single-cell studies are converging on a set of biomarkers and phenotypes 
for the different cells in the brain in Alzheimer’s disease33,34 (see Figure 7). Furthermore, spatial technologies are adding 
biomarkers to this assessment and significant effort is now going into characterising the Amyloid Plaque Niche35. Multi-omics 
assessments will also be immensely valuable in pulling apart the heterogeneity of brain disorders. Recent reviews highlight the 
value that multi-omics single-cell and spatial methods will have in Alzheimer’s research and are worth a read36,37. 

Single-cell and spatial studies in the brain have also helped with understanding the headaches and cognitive 
symptoms associated with COVID-19 infection. Analysis of post-mortem brain structures has shown aberrant 
features of specific cells such as microglia and astrocytes, as well as inappropriate localisation of T-cells in the choroid 
plexus39,40. This leads us to the final disease exemplar, COVID-19.

FLG: What insights into Autoimmune 
disease pathogenesis have 
you acquired using single-cell 
computational omics, and what is 
the potential clinical value of your 
work?

Fan: Patients with autoimmune 
diseases are often refractory to 
standard therapies and do not achieve 
remission, so there is an unmet 
need for novel and personalized 
therapies that can be gained from 
digging into the molecular and 
cellular heterogeneity of human 

disease samples. Our single-cell 
computational strategies, combined 
with systems immunology approaches, 
deconstructed the inflammatory 
cellular components of rheumatoid 
arthritis, a prototypical autoimmune 
disease, and determined whether 
certain states are enriched only in 
certain subsets of patients31 (Zhang 
et al., Nature, In press, 2023). These 
analyses provided a molecular and 
a tissue-based stratification, which 
could inform novel targeted-treatment 
approaches in other autoimmune 
diseases.

FAN ZHANG 
Assistant Professor 

University of Colorado School 
of Medicine

FIGURE 6. MOST COMMON 
NEURODEGENERATIVE 
DISORDERS WITH THEIR 
AFFECTED BRAIN REGIONS 
ALONG WITH SIGNIFICANT 
PUBLICATIONS 
USING SINGLE-CELL 
TECHNOLOGIES. 
Please refer to Image source 
for full reference details of any 
publications listed. Image Credit: 
Pozojevic and Spielmann38
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COVID-19
Beyond the impact on the brain, 
understanding the biological 
impact of COVID-19 infection on the 
human lung and circulatory system 
is another general area in which 
single-cell and spatial technologies 
have shown promising advances. 
Spatially-resolved imaging mass 
cytometry of the infected lung has 
shown unique features such as 
increased neutrophil infiltration into 
the lung, and that the predominant 
infection target of the virus is 
alveolar epithelial cells, which 
creates a hyper-inflammatory 
cell state41. Studies from this 
year are furthering this approach 
identifying novel immune crosstalk 
mechanisms42. 

A single-cell multi-omics approach 
on ~780,000 blood cells from 130 
patients recently found several COVID-19 specific phenotypes, such as increased monocytes with receptors for 
interacting with platelets, predicted to replenish alveolar macrophages, and an expansion of CD8+ effector T cells43. 
First author of this study, Dr. Emily Stephenson, recently spoke at a Front Line Genomics webinar and had the 
following to say. 

This list is by no means a comprehensive selection of every disease that stands to become better characterised 
with the development of single-cell and spatial methods. Instead, they present a valuable set of examples for 
the type of specific biomarker that will be acquirable to enable the precision therapy approaches that are on 
the horizon.

FIGURE 7. OVERVIEW OF CELL TYPE-SPECIFIC BIOMARKERS IDENTIFIED 
USING SINGLE-CELL TECHNOLOGIES ON ALZHEIMER’S DISEASE SAMPLES. 
Please refer to Image source for full reference details of any publications listed. Image Credit:  
Luquez, et al.33

FLG: What have you learned about 
COVID-19 using single-cell multiomics 
technologies such as Cite-Seq, and how 
could this have clinical impact?

Emily: Using single-cell multi-
omics has enabled us to study the 
immune response to COVID-19 at 
unprecedented resolution. We have 
learned that this response, in milder 
cases, is driven by the co-ordinated 
actions of adaptive lymphocytes 
such as T and B cells. However, this 
response can become uncoupled in 

severe cases, and can contribute to 
worsening disease. These actions 
can serve as therapeutic targets 
and further investigations into the 
treatment of the disease.

Our findings in individuals with 
asymptomatic COVID-19 were that they 
had an expansion of a specific sub-
type of B cell, one that is associated 
with mucosal linings such as the upper 
airway of the nose and throat. This could 
have significance when designing future 
vaccines or prophylaxis."

EMILY STEPHENSON 
Senior Research Associate, 

Haffina Lab 
Newcastle University
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VIRAL TROPISM ASSESSMENT AT THE SINGLE-CELL LEVEL IS CRUCIAL 
FOR DEVELOPING SAFE AND EFFECTIVE OPTIMIZED AAV VECTORS 

FOR GENE THERAPY, AS HIGHER AAV SPECIFICITY LEADS TO LOWER 
DOSAGES, FEWER SIDE EFFECTS AND MORE AFFORDABLE STRATEGIES

As of October 2023, over fifteen in vivo gene therapy drugs have entered the US/EU pharmaceutical market. The 
majority utilize adeno-associated virus (AAV) vectors as a delivery vehicle, preferred for their lower integration risk, 
stable gene expression, and relatively broad tropism (i.e., capacity to transduce many cell types). Nevertheless, many 
AAV-based drugs fail due to low tissue specificity, which makes high dosing necessary and consequently increases safety 
risks1. This case study shows the single-cell solution to that issue.

CASE STUDY

AAV BIODISTRIBUTION 
AT SINGLE-CELL RESOLUTION

The Spatial and Single-Cell Analysis Playbook

Commonly, researchers use immunohistochemistry and in situ 
hybridization techniques to analyze vector tropism. However, these 
approaches have downsides. They explore a limited number of AAVs 
simultaneously, often only one or two, and rely on known marker genes 
to identify cell types. This prevents an unbiased study of tropism and 
precludes the accurate detection of hard-to-detect cell types.

Moreover, these approaches complicate tracing back findings to 
downstream changes in single transduced cells. Single-cell sequencing 
can overcome these limitations, providing a higher-resolution view of 
vector tropism and downstream effects of the expressed transgene.

A DEEPER VALIDATION OF TROPISM FIGURE 1. MULTIPLEX AAV TROPISM IN 
OCULAR ORGANOIDS.
(A) Full transcriptome sequencing clusters cells on 
gene expression. (B) Simultaneous AAV transcript 
detection identifies succesfully transfected cells. 
(C) Matched results measure viral tropism and 
quantify transfection efficiency2.

Two methods have shown succesfull AAV transcript detection in single 
cells: (1) AAV transcript RNA can be detected directly from single-cell 
mRNA sequencing libraries2,3; (2) custom enrichment strategies can ‘fish 
out’ AAV transcripts from single cells with targeted amplification5.

Both methods enable multiplex measurement of transduction efficiency 
and specificity by measuring how libraries of delivery vectors transduce 
diverse cell types (see figure 1). Multiplexing is common practice in 
AAV biodistribution studies, for instance when analyzing different AAV 
serotypes or testing engineered novel capsids in high throughput.

DETECT AAV TRANSCRIPTS IN SINGLE CELLS
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AAV BIODISTRIBUTION AT SINGLE-CELL RESOLUTION

About Single Cell 
Discoveries
We are focused on providing 
cutting-edge single-cell 
sequencing services and 
assay development to bio-
pharmaceutical companies, 
health systems, and academic 
research centers globally. 

In our brand-new, purpose-
built  laboratory in Utrecht, the 
Netherlands, our team of PhD-
level scientists is dedicated to 
developing customized solutions 
to your unique scientific quest-
ions, all while ensuring high 
quality and rapid turnaround 
times. We receive samples from 
US-based clients via our sample 
collection point in the US.

DELIVERING A SINGLE-CELL SOLUTION
Single Cell Discoveries’ R&D unit has further developed these methods to 
reveal AAV transduction efficiency, specificity and downstream effect in single 
cells. Our current protocols allow our clients to measure cells’ transcriptomes 
parallel to AAV and transgene transcripts at single-cell resolution.

This assay reveals: 
1. Transduction efficiency as measured by transgene expression;
2. Cell-type-level specificity of AAV tropism enabled by cell-type 

annotation, based on full transcriptome data;
3. Gene expression changes in the cells that express the AAV transcript, 

showing the pharmacodynamic effects of the gene therapy.

By combining these readouts in a single assay, drug developers can make 
a better-informed selection of AAV candidates for further optimization, fuel 
capsid engineering efforts, and rule out vectors with low specificity earlier on 
in the pipeline. We are eager to continue applying single-cell RNA sequencing 
in collaboration with our clients to develop safer, more effective, and more 
accessible gene therapies.

SABINE TANIS
Team Lead Method Development

Single Cell Discoveries

What does single-cell AAV detection 
enable for drug developers?

Sabine: Drug developers can test multiple 
AAV variants on the tissue of interest and 
find out which cell types were successfully 
transduced by which AAV candidate.

What aspect of this application excites 
you the most?

Sabine: The multimodal readout. The gene 
expression profile enables accurate cell 
typing. By projecting AAV detection on this, 
we can characterize AAV tropism at cell 
type-resolution. Then, the single-cell gene 
expression profiles also enables a deeper 

look at the AAV transcript effects on the 
cells’ gene expression. So the technique 
suits the AAV development workflow 
immediately, but can also deliver novel 
biological insights in the long run.

How do you approach developing new 
single-cell assays?

Sabine: We discuss with our clients what 
they need and work on a bespoke solution. 
For this, we leverage our experience and 
diverse in-house expertise for protocol 
development and optimization. That way, 
clients can trust us to return custom-fit 
solutions for their challenging projects.
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CHAPTER 7

COMMUNITY DISCUSSIONS . AI, 
BENCHMARKING AND WHAT IS A CELL TYPE?
OUR PENULTIMATE CHAPTER COVERS SOME OF THE EXCITING FUTURE 

PROSPECTS WITHIN SINGLE-CELL AND SPATIAL RESEARCH THAT 
COULD ADDRESS CHALLENGES FACED BY THE COMMUNITY. 

First, we summarize how artificial intelligence is being used to improve single cell and, especially, spatial analysis and 
its ability to predict unseen aspects of single-cell biology in silico. Then, we review answers to a pressing question in 
single-cell biology - how do we define a cell type? Finally, we have a look at some of the community efforts to improve 
the uptake, understanding and to standardize the plethora of single-cell and spatial tools. 

How Artificial Intelligence is shaping single-cell and spatial analysis
Artificial intelligence and machine learning models 
are a hot topic of conversation. Whilst most 
readers will be aware of ChatGPT and its ability 
to synthesize information in conversational form, 
perhaps less well known is the various ways 
artificial intelligence is being applied to biological 
sciences, and specifically to address the challenges 
faced within single-cell and spatial methods.

Machine learning methods, the most powerful 
forms of deep learning, have been applied to 
combat several of the data analysis problems 
in single-cell and spatial analysis (see Figure 
1). Their utility comes from handling this high 
dimensional data in a way that utilizes most of the 
data compared to traditional methods. The most 
widely employed algorithms are autoencoders, 
which can capture features and improve signal/
noise ratios and can learn to improve most aspects 
of single-cell analysis - such as removing batch 
effects, dimensionality reduction, clustering of cells 
and cell annotation. The various algorithms for the 
above have all been reviewed extensively1,2. 

Machine learning models for more specific challenges 
in single-cell analysis have already been discussed 
in this report in chapters 3 and 6, but deep learning 
has been applied very recently to more targeted 
problems. These include predicting stemness from 
single-cell data3, for specific challenges in drug 
discovery such as drug-drug interactions4, and we are 
seeing the use of ML models expanding into spatial 
analysis, with algorithms to handle the challenging 
problem of cell segmentation5. 

FIGURE 1. OVERVIEW OF AI METHODOLOGIES AND 
APPLICATION AREAS FOR SPATIAL TRANSCRIPTOMICS.
(A) Timeline of AI methods for ST analysis. (B) applications of spatial data for 
which machine learning and deep learning have assisted. Image Credit: Li, et al.7
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June 2023 saw the release of scGPT6 , which presents a unified solution to single-cell analysis. It is the first 
utilization of large-scale generative pre-trained models, such as is used in ChatGPT, to perform single-cell analysis 
from start to finish. 

The model was trained on over 33 million cells and negated the need for dimensionality reduction. When trained on 
gene and cell embeddings, scGPT subsequently improved cell type annotations from the data it was trained on and 
was finetuned to identify new gene regulatory networks and to perform multibatch and multimodal data integration 
better than current popular tools. With plans to train scGPT on more single-cell data including perturbations, it is likely 
a matter of time before pre-trained models are integrated into standard single-cell research.

Machine learning has great promise, but there are drawbacks. For instance, how poorly understood these models are 
compared to the statistical models they replace, and hence why most people lack the knowledge necessary to finetune 
these models to get the best results. When these models are treated as a black box, there will be consequences for the 
biological conclusions drawn from them. 

Regardless, many elements of spatial analysis still present fundamental computational problems. We asked some of 
our contributors what they thought the promise of machine learning was for spatial analysis.

FLG: What is the hope for deep learning 
models with spatial analysis? Is dealing 
with spatial data a different kind of 
problem?

Mo: We know the location of the cell 
is important. For example, if two 
cells are close to each other, they 
are likely communicating, and their 
transcriptome is actually affected 
by this communication. Spatial 
genomics gives you the power to 
understand tissue organization. AI 
approaches allow us to understand 
this tissue organization. For example, 
we can identify clusters of cells that 
are always sitting together, and we 
can understand why those cells are 
actually sitting close to each other and 
what type of communications they're 
having. 

Another challenge with spatial 
transcriptomic is that often the location 
in space doesn't align for different tissue 
sections. If you take a slice from a region 
in the brain and then another region, 
and another, they will have completely 
different coordinates. One big challenge 
is how to put all of these things into 
one big map by having a common 
coordinate system. AI could help with 
that because it can give you a holistic 
view of the whole tissue, and maybe even 
for the whole body. So, you can have 
a 3D co-ordinate system that you can 
manoeuvre and then understand how 
the composition of the cells changes, and 
how the transcriptome changes. This 
would effectively be a 3D simulator, in 
which you can change something and 
then see the effect on the surrounding 
cells and also the whole tissue.

MOHAMMAD 
LOTFOLLAHI 

Scientist, Helmholtz Munich/
Wellcome Sanger institute, 

Director of Machine Learning, 
Relation Therapeutics

MACHINE LEARNING HAS GREAT PROMISE, BUT THERE ARE 
DRAWBACKS. FOR INSTANCE, HOW POORLY UNDERSTOOD 
THESE MODELS ARE COMPARED TO THE STATISTICAL MODELS 

THEY REPLACE, AND HENCE WHY MOST PEOPLE LACK THE KNOWLEDGE 
NECESSARY TO FINETUNE THESE MODELS TO GET THE BEST RESULTS."
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FLG: What is the promise of AI and 
machine learning for spatial biology?

Jovan: Spatial biology combined with 
machine learning will contribute to the 
discovery of novel biological insights. 
Where I expect to see most progress, is in 
the re-establishment of the relationship 
between structure and function at a 

higher resolution, and the improvement 
of our understanding of the underlying 
biology. Interpretable and explainable 
models can facilitate the establishment 
of new theories of tissue biology which 
could translate to clinical practice, 
complementing current histological 
methods and positively impacting clinical 
outcomes.

FLG: What is the promise of AI for 
spatial biology?

Anna: I believe that eventually, it will 
change the field. However, there are two 
aspects we need to keep in mind. The 
first one is data. Especially in spatial 
omics, we are still looking at either 
very limited feature spaces or limited 
resolution. Ideally, this issue will be 
minimized in the feature or resolved in 
efficient ways through AI. The second, 

very important aspect, is understanding 
what models learned from spatial data. 
AI-based methods work well according 
to various different benchmarks. But 
it is important to investigate whether 
the outperformance is simply due to 
a feature of the data or because the 
model in fact learned some interesting 
biology. This also highlights the need 
for well-thought-through metrics and 
benchmarks that assess what AI models 
have learned.

JOVAN TANEVSKI 
Research Area Leader, Saez-

Rodriguez Group  
Institute for Computational 

Biomedicine, Heidelberg 
University and Heidelberg 

University Hospital

ANNA SCHAAR 
PhD Candidate, Fabian Theis Lab  

Institute of Computational 
Biology, Helmholtz Munich

INTERPRETABLE AND EXPLAINABLE MODELS 
CAN FACILITATE THE ESTABLISHMENT OF 
NEW THEORIES OF TISSUE BIOLOGY WHICH 

COULD TRANSLATE TO CLINICAL PRACTICE, 
COMPLEMENTING CURRENT HISTOLOGICAL METHODS 
AND POSITIVELY IMPACTING CLINICAL OUTCOMES."
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There are also several challenges in making these tools relevant to the 
clinic8, such as the limited available patient data to train models on. 
Typically, these tools are trained on atlases which tend to translate 
poorly to individual clinical data. This means the accumulation of high-
quality single-cell data will have a great impact on the utility of the AI 
models, and should be a priority for the community.

One very exciting future prospect for machine learning goes further 
than learning to perform a specific aspect of single-cell analysis better 
than humans. Instead, models have the potential to learn about single-
cell biology in a way that they can predict unseen aspects of it. 

We spoke to Dr. Mohammed Lotfollahi about his most recent tool to 
predict cellular responses to complex perturbations, such as predicting 
the impact of unseen drug combinations upon cells. This highlights one of 
the great strengths of deep learning models; using current data to learn 
and predict the best avenue to explore for future experiments, so that one 
can escape the luck element when having to choose which of 1000’s of 
potential experiments/drug targets/therapies to pursue. 

Their deep generative model, CPA, can predict gene expression profiles for cells that would result from unseen 
combinations of perturbations that it has previously learned (Figure 2)9,10. As mentioned in our discussion with Dr. 
Mohammad Lotfollahi below, this leads us closer towards the goal of training learning models so extensively on single-
cell biology that they operate as in silico drug and disease testing apparatus. Whatever the future of deep learning in 
single-cell biology, it is already drastically improving data analysis and helping to finetune experimental procedure. 

FIGURE 2. REPRESENTATION OF CPA.
(A) Workflow overview. The encoder takes a matrix of gene expression and isolates the basal state before adding perturbations to output a new gene-
expression matrix based upon the perturbations it assigns. (B) The features of CPA are plotted in latent space ad allows dose response interpolation and 
predictions to novel unseen drug combinations. Image Credit: Lotfollahi, et al.11

“THIS HIGHLIGHTS 
ONE OF THE GREAT 

STRENGTHS OF DEEP 
LEARNING MODELS; 

USING CURRENT 
DATA TO LEARN 

AND PREDICT THE 
BEST AVENUE TO 

EXPLORE FOR FUTURE 
EXPERIMENTS,"
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FLG: The last tool I want to discuss, the one you've 
most recently put out, is CPA and ChemCPA. How do 
they work? And what is the value of these tools to the 
scientific community and for drug discovery?

Mohammad: For most diseases, we don't have a drug 
target. We know the phenotype of the disease i.e., 
how the person or sample has changed compared 
to healthy control, but we often don't know the 
underlying mechanism. For drug discovery and 
pharma, they're using high throughput 
screens, meaning that a disease 
sample is being tested with 1000’s of 
drugs to see which one of those drugs 
can push the phenotype toward the 
desired healthy state. Since single-
cell technology is expensive, you 
cannot keep doing this with 1000’s 
of drugs and then when you go to 
drug combinations. That's even worse 
because these drug combinations 
represent a combinatorial space. 

So, you need in silico algorithms 
that will be able to generate single 
cells and predict how transcripts 
will change in response to a specific 
drug or genetic manipulation. 
That's what we were doing with CPA 
and ChemCPA. CPA is the general 
framework that allows you to predict 
single-cell behaviour changes (i.e., 
transcription changes) to both drugs 
and genetic manipulations. 

The way it works is a bit like a Lego. If you can imagine a 
cell as being in a basal state. This is a single Lego block, 
and then you can add a second Lego block to it and 
that makes it a neuron, and then you can add a third 
piece of Lego and that represents the effect of a drug. 
This algorithm would separate these three things out. It 
reverses the effect of the cell type, it reverses the effect 
of the drug, and it tries to then put them back together. 
Once it has learned to separate things, then you could 
replace one of those components with a new component. 

MOHAMMAD 
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So, you can replace the drug with another drug that 
you haven't tested, and CPA actually allows that. Then 
you can predict the transcriptome effect of that drug or 
a specific genetic manipulation. 

Then with ChemCPA, we incorporated the structural 
identity of the drugs. So now the model is not just 
conditioned on the transcriptome effect, but also on 
the structure of the drug. It’s hypothesized that drugs 
with similar structure might induce a similar effect, and 
we leverage that assumption here. If the model sees 
enough drugs with a diverse set of structures, it might 
be able to predict the effect of drugs it has never seen. 

FLG: And did you see validation for the algorithm?

Mohammad: Yes. In the paper we applied the algorithm 
to three cancer cell lines. We had the responses of these 
cancer cell lines, breast cancer, leukaemia and lung cancer, 
to 188 different drugs. Then we trained 
CPA, which inferred a perturbation 
map of which drugs would induce 
similar responses. If two drugs induce 
similar behaviours in the cells, they 
will be embedded close to each other 
in this perturbation space. We use 
that perturbation space to select drug 
candidates that were actually effective on 
the cells to design a second experiment, 
but this time with combinatorial drugs. 
We subsetted the 188 drugs, down to 32 
mono, and then, combo drugs. Again, we 
trained the model with the new data set, 
but this time we left out bunch of these 
combinatorial drugs. We showed that the 
model predicted the right transcriptome 
effect for them, it matched what the 
experimental data told us.

FLG: That's really promising! Would you say the 
ultimate goal for this kind of work is to build an in 
silico drug testing suite? 

Mohammad: Exactly. That's the ultimate goal. One 
where you have a gigantic in silico space of chemicals 
or genetic perturbations, and then you can narrow 
down the space to say, three drugs that are really 
effective against the disease. Then you'd go and 
test them and then this data could be fed back into 
the algorithm. If the algorithm predicted an effect, 
you go and generate data, you feed it back to the 
algorithm and it gets better and better for multiple 
iterations. At some point, you reach the phenotype 
that you desire. That would be the ultimate goal. It 
could give you a simulated space for perturbing the 
tissue and the cell, and that will help you understand 
and design your experiments.

“THAT'S WHAT WE WERE DOING WITH 
CPA AND CHEMCPA. CPA IS THE GENERAL 
FRAMEWORK THAT ALLOWS YOU TO 
PREDICT SINGLE-CELL BEHAVIOUR 
CHANGES (I.E., TRANSCRIPTION CHANGES) 
TO BOTH DRUGS AND GENETIC 
MANIPULATIONS."
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What is a cell type? 
Classifying cells into cell types is both 
practical and informative in the era of 
single-cell transcriptomics. However, 
given the centuries-long interest 
biologists have had in understanding 
organisms at the cellular level, and 
the immense value of a standardized 
cellular taxonomy, it is quite remarkable 
how poorly defined a ‘cell type’ still is. 

Do we classify cells by their shape, 
locale, development/ontogeny or 
how they interact with other cells? 
Historically, all of the above have been 
used (see Figure 3 for overview of 
classification schemes).

With the advent of single-cell 
transcriptomics, and the ability to 
explore genomics in individual cells, our ability to understand cell types has been transformed from observational and 
small scale to building whole atlases of cell types based on transcriptomic differences. 

The majority of single-cell sequencing efforts have used the most accessible metric, RNA levels, as the basis of cellular 
identity. This results in portioning out clusters of cells based on transcriptomic similarities. This has revealed the 
unexpected cellular heterogeneity of multiple tissues when it comes to RNA expression. 

But is RNA a sufficient marker of cellular identity? 

The answer is no. RNA is short-lived and not a reliable marker of identity, particularly in snapshot form (such as in a 
single-cell sequencing experiment) since RNA can vary significantly between cell states. Ultimately, transcription shows 
a picture of a cell’s potential to make proteins, not its actual protein constituent nor its function.

Transcriptomics has been essential for moving cell classification away from identifying cells based on shape and size, 
but converging expert opinion suggests that13, for our definition of a cell type to be meaningful, it must be associated 
with what cells do, which means transcriptomics must be linked to anatomical and functional information too14.

Several attempts have been made to create a new standard to classify cells by. Morris15 recently suggested three 
central pillars which when taken account of, would construct a high-resolution, dynamic cell identify landscape15: 

Phenotype – the physical, molecular and functional features of a cell. 
Lineage – the developmental origins of cell.
State – although cell identify is stable, it must be defined in a flexible enough way to remain consistent across the 
variety of states a cell may be in. 

To try to capture this information, it has been suggested that a periodic table of cells could be used to classify cells. 
In this table, each row would capture the cell differentiation trajectory of a cell type, organised by developmental 
origin and each column would capture cells fates from conception to maturity. This periodic table could operate as a 
central resource for identifying cell types, and could be used to predict missing cell types following development and 
differentiation logic16.

FIGURE 3. VARIOUS WAYS TO CLASSIFY CELLS. CELL TYPE 
NOMENCLATURE USES A SELECTION OF ALL OF THESE, BUT NONE 
ARE SUFFICIENT ALONE AND A CENTRALIZED SYSTEM IS NEEDED 
GOING FORWARD.
Image Credit: Domcke and Shendure12
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How do we build this table? 

A practical step by step guide11 suggested we first use transcriptomics information as an anchor to which other multimodal 
information (namely epigenomic and spatial) can be incorporated to distinguish these types further. These multimodal 
transcriptomic clusters can then undergo anatomical and functional assessments, followed by developmental trajectory 
analysis and cross-species comparison to reflect the reality that cell types are the product of evolution. 

However, the most recent foray into this topic argues against atlases and periodic tables, which still rely heavily on pre-
defined marker genes to segment the original cell types. It instead suggests a new organizing principle for cell types - a 
reference cell tree - which is data driven and based on consensus ontogeny12.

The authors of this publication tackle a few cloudy elements when it comes to cellular identity. Firstly, they highlight 
how muddled the terminology is around cell types and provide clear definitions of the terms cell type, state, identity 
etc. (See box). Secondly, they provide clear aims for a 
cellular classification system.

They claim we should be looking for a cell type 
nomenclature that (1) identifies all cells during a 
lifecycle, (2) accounts for inter-individual variation 
and disease state changes, (3) is biological/
functionally meaningful but - most importantly-, (4) a 
nomenclature for cells which will last 100’s of years 
into the future so that we can successfully compare 
the same cells across studies. 

When evaluating the different organizing principles 
detailed in Figure 3, none of them are sufficient 
to classify cells to meet this standard. However, if 
the data-driven power of molecular profiling was 
combined with a form of lineage tracing, would this 
meet the criteria?

With effective time-resolved lineage tracing, molecular 
profiling of cells at multiple developmental time points, 
and methods to link cell states between different 
developmental time points, we could effectively build 
developmental/molecular reference guides for cell 
types which could act as a unifying reference for all 
cell typing. This would allow us to move away from 
organizing cells by identity and difference (Tables 
and Atlases) and instead towards relating cells to one 
another through functional and temporal relationships 
(Trees). See Figure 4 for an exemplar tree.

Whether in the form of a periodic table or reference 
tree, the cataloguing of cells will not persist as 
unidimensional transcriptional clusters in the age of 
spatial biology, multiomics and live sequencing. To 
get some further insights into reference cell trees 
we reached out to the paper’s first author, Dr. Silvia 
Domcke, for more clarity on how these trees can be 
constructed and the value they would provide. 

FIGURE 4. EXEMPLAR CELL REFERENCE TREE 
INCORPORATING THE ENTIRETY OF ORGANISM 
DEVELOPMENT ALONGSIDE MOLECULAR 
MEASUREMENTS.
Image Credit: Domcke and Shendure12

Cell type: A recurring pattern of developmental origin and 
potential within and across cell lineage trees of individuals 
of a given species, generally reflected in shared molecular 
properties.

Cell state: Variations in molecular phenotypes within a cell 
type that do not impact its developmental potential (e.g., cell 
cycle, stochastic fluctuations).

Cell identity: An individual cell as characterized solely by its 
molecular phenotypes at a given moment in time.

Cell lineage: The relationships among cells of an individual 
organism as defined solely by the series of cell divisions that 
begins with a single zygote.

Cell trajectory: Ordering of cells’ developmental relationships 
inferred solely from similarity in molecular phenotypes, which 
might or might not recapitulate developmental cell lineage 
relationships.
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FLG: In brief, how do we transition from single-cell 
atlases to single-cell reference trees? What steps need 
to happen?

Silvia: We are increasingly adept at profiling 
molecular measurements (such as gene expression 
or chromatin accessibility) at single cell resolution for 
an ever expanding breadth of tissues and even whole 
organisms (i.e., ‘atlases’). However, it is challenging 
to ascertain how these cells relate to one another, 
both within one study or modality, and even more so 
across studies or modalities (e.g., gene expression 
and chromatin accessibility). If we measured the 
‘lineage’, the relationships among cells, as defined by 
the series of cell divisions that begins with a single 
zygote alongside the molecular profiles in each cell, 
we could use this to derive a ‘reference cell tree’ for 
each organism. This would represent a ground truth 
framework onto which all other datasets could be 
projected and this would be analogous to projection 
of local chromatin states onto the reference genomes 
constructed by the Human Genome Project. 

CRISPR-based lineage-tracing systems can perform 
continuous recording of cell lineage for weeks with 
multiple events per cell division, and capture scRNA-
seq profiles from the same cells17 To build a reference 
tree, we would need to: 

•	 Subject a series of progressively older embryos, 
as well as adult organ systems, to a flavour of 
molecular recording that yields a comprehensive 
lineage tree, with rich molecular states for terminal 
nodes (e.g., scRNA-seq, scATACseq etc.). 

•	 Bridge gaps using methods that additionally record 
information about the molecular identities of their 
ancestors18, as well as inference. 

•	 Such trees would then be merged across 
individuals to yield a molecularly annotated 
consensus ontogeny of a given species using 
phylogenetic algorithms19, statistically bounded 
by the invariant aspects of this organism’s 
development. 

•	 A data-driven consensus nomenclature could be 
applied to unequivocally define and name cell 
types within branch segments of the tree, based 
on objective criteria such as maximum information 
gain, and related to currently used cell type names 
as ‘synonyms’.

•	 Once the reference tree is constructed, we would 
not need to measure lineage alongside each 
molecular measurement to enable projection onto 
the tree.

SILVIA DOMCKE 
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“ONE IMMEDIATE 
ADVANTAGE WOULD 
BE THAT CELLS FROM 
DIFFERENT STUDIES 
CAN BE RELATED TO 

ONE ANOTHER AND BE 
UNEQUIVOCALLY NAMED."



FLG: What are the biggest problems 
that we will run into when trying to 
make trees over atlases?

Silvia: Although methods exist 
to measure lineage and different 
molecular profiles in the same cell, 
they need to be further optimized to 
achieve the necessary resolution. In 
addition, this information will need 
to be collected for many individuals 
of the same organism. 

A further key challenge is that 
genome-editing based lineage 
tracing is - of course - not an option 
in humans. There are at least four avenues to address 
this challenge:

(1) 	Generation of consensus ontogenies of closely 
related organisms. 

(2) 	In vitro human ‘‘stembryo’’ models. 

(3) 	Lineage tracing based on somatic mutations in 
chromosomal or mitochondrial DNA.

(4) 	Lineage inference based on molecular profiles 
from human tissues, the accuracy of which can be 
assessed on organisms for which lineage data exists. 

Similarly, when it is not possible to apply lineage-
tracing approaches to pathological states, cell states 
with only molecular information could still be mapped 
onto the lineage tree by using inferred trajectories.

There are further practical challenges, such as the 
logistics of data storage, analysis and maintenance.

FLG: What would be the direct advantage to a 
researcher in the field or a clinical researcher to 
having cell reference trees (consensus ontogeny) as 
opposed to atlases?

Silvia: One immediate advantage would be that cells 
from different studies can be related to one another 
and be unequivocally named. In addition, it enables 
the nomination and validation of genes, such as 
transcription factors, that shape specific cell type 
transitions. For diseases in which developmental 
processes are involved, it provides a whole new 
understanding of how disease phenotypes arise and 
helps characterize both inter- and intra-individual 
phenotypic variation. It also supports the systematic 
‘placement’ of in vitro systems (e.g., organoids), 
which are increasingly used in preclinical research, 
in relation to wild-type development. Moreover, it 
would facilitate aligning cell types or organ systems 
across species and could thus highlight potential key 
differences when translating research findings from 
animal studies to the clinic.
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Community Efforts to teach and standardize single-cell and spatial
With fast-paced progress comes an accumulation of problems and challenges. Current users of single-cell and 
spatial methods have various levels of understanding when it comes to how best to utilise these methodologies. 
One of the recent movements in the field has been a push towards standardization and benchmarking methods 
to enable comparable single-cell and spatial experiments to be performed across the world, and to identify a gold 
standard approach. 

Many members of the community have put their energy into this, as well as into producing resources and 
fostering communities to assist technology users with how to use computational tools, how best to prepare 
samples, or simply a place to try and troubleshoot problems. Below we list some of these initiatives as well 
as comments from organizers within them to showcase the essential progress the community is making to 
standardize and broaden single-cell and spatial methodology. 

Single Cell Ninjas. Perhaps the most well-known community in the single-cell space is the 
Single-Cell Ninjas, a group of researchers with extensive expertise on performing single-cell 
experiments and analysing the data. Established by Luciano Martelotto and Catia Moutinho, the 
community consists of 100’s of single-cell and spatially minded individuals and currently 

operates on twitter at the following handle @Sc_Ninjas. Their aim is to help people tackle the challenges they have 
in running their single-cell experiments, to troubleshoot problems and  provide advice on best technology and 
protocols. Luciano is also part of a new platform called GESTALT - @GESTALT_sp with a focus on spatial 
technologies, we spoke with him to get an insight into these two endeavours. 

FLG: Can you describe yours and 
Catia’s project, the Single Cell 
Ninjas?

Luciano: The Single Cell Ninjas is 
a platform we maintain on Twitter. 
We established it after realizing how 
much knowledge we were gaining 
from the 'wild'—from hands-on 
experience with these technologies 
and through interactions with various 
individuals. We wondered, why not 
share this knowledge with those 
who might not have access? And 
I'm not just talking about those in 
Boston or major USA, Australian or 
European institutions. I'm referring 
to individuals in underrepresented 
countries with limited access to 
infrastructure and experts. This was 
the genesis of Single Cell Ninjas. Over 
the past few years, we've provided 
valuable advice and have worked 
diligently to democratize knowledge. 

A group of us, unrelated to the Single 
Cell Ninjas, recently launched a 
platform named 'GESTALT' or Global 
Alliance for Spatial Technologies, 
which is primarily focused on spatial 
omics. You can also find us on 
Twitter @GESTALT_sp. We felt it was 
crucial to establish a group that 
functions as a global alliance for 
spatial technologies. The primary 
objective is to eliminate any ambiguity 
or confusion in terms of what’s 
possible now and what likely happen 
in the future, and at the same time 
democratize spatial-omics knowledge 
and access. Once we achieve that 
clarity, our aim is for this platform 
to serve as a hub for collaboration 
and knowledge sharing. This will be 
a place where we can work together, 
form partnerships, standardize 
processes, and foster understanding 
about interoperability. That's the 
essence of our initiative.
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The Single-Cell World. Catia Moutinho has another platform she runs to disseminate information called 
The Single-Cell World. The goal of this platform is to disentangle ‘single-cell technology in a way that 
anyone will understand’. She also produces a podcast focused on understanding single-cell sequencing 
processes and things you might want to consider when deciding the best approach for your experiment. 

Sanbomics. While some people like to listen, other people like to watch. An excellent video 
resource to understand and visualize single-cell analysis is the Sanbomics YouTube channel run by 
Mark Sanborn. Along with statistical and computational walkthroughs, there are also in-depth 
guides on performing different aspects of single-cell analysis for beginners, including a video that is 

over an hour long of Mark performing single-cell RNAseq analysis from start to end.

sc RNA-tools

scRNA-tools. Switching focus to community-led resources for standardization, there are some very 
useful resources such as scRNA-tools, which is a catalogue of all single-cell RNA tools (currently with 
over 1500 tools) with information such as the language they’re written in, the number of citations 
using the tool, and the broad areas of single-cell analysis the tool works in. Here you can find all 

available tools for clustering, dimensionality reduction or visualization with ease.

Sajita Lab. The Sajita lab website, led by Rahul Sajita, Associate Professor, NYU, is a useful resource. 
The Sajita lab hosts a yearly Single Cell Genomics Day, a virtual practical workshop where you can 
hear about new single-cell tools, as well as the yearly presentation of the top 10 single-cell 
developments of the year. There are resources such as guidance for their popular tool - Seurat, a 

slide deck to help choose the right single-cell tools and a cost per cell calculator to help plan your experiments

FLG: As part of the Single-Cell World 
project, you produce an excellent 
podcast covering topics and trends in 
single-cell, what was the motivation 
behind the Single-Cell World Podcast?

Catia: I love podcasts. I love to read 
but I don’t love to read science papers. 
It was always an obligation, to be 
honest. I love to read to disconnect. 
But if I'm listening to a science podcast, 
it's easier. I can go for a walk and 
enjoy life while I am learning. And since 
the Single-Cell World is my project, I 
can decide to do what I like most, so I 
thought ‘okay, let's do a podcast.’ This 
was the motivation. And also, I like to 
talk with people. And it's easier for me 
to explain through talking rather than 
with writing.  I also write the Single-Cell 
World blog. 

FLG: How do we help researcher’s 
struggling to keep up with the fast-
paced development of these tools?

Catia: Right now, as a freelancer 
scientific advisor, one of my tasks is to 
be updated on single-cell technology. 
Before when I was a Group Leader, 
it was different, and I remember I 
didn’t had time-to keep myself on top 
of things. I knew about most of the 
updates because companies were 
contacting our lab with new products 
and technologies. Otherwise, I couldn't 
get the time to read, to attend the 
different webinars, to check all social 
media information. Back then I 
thought, it will be amazing if there is 
one place where I can find all the new 
information. This was one of my goals 
with the Single-Cell World project, 
besides sharing my knowledge and 
help scientists. So, this is my strategy - 
to try to help.

CATIA MOUTINHO 
Founder & Scientific Advisor  
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Open Problems. Benchmarking computational tools is a pressing community effort and Open 
Problems in Single-Cell Analysis is another community effort targeting the vast quantity of software 
available for single-cell analysis by providing an open source, community driven platform for 
continuously updated benchmarking of defined tasks in single-cell analysis. Here you can find 

updated benchmarking for spatial decomposition, denoising, batch integration and more. 

Scverse. The scverse20 is a multi-institution open-source software project in which a group of highly 
talented early career computational biologist, who have produced widely used software packages, 
gather to address storage and analysis needs of single-cell data and provide software-specific 
troubleshooting. The goal is to build an essential infrastructure for single-cell analysis, and to attempt to 

counter the issue of an ever expanding set of scattered and overlapping tools by centralizing their tool set and performing 
long-term maintenance. A community is also building in the scverse with events such as Hackathons and community 
meetings regularly scheduled, and an active discourse forum to discuss general and software-specific points of interest. . 
We spoke to Anna and Lukas, two core members of the scverse team.

FLG: Can you describe what the scverse 
is? Why was it set up? And what do you 
hope it will achieve?

Lukas: A postdoc in our lab, Luke 
Zappia, published a paper that visualized 
a graph of all major packages in 
Python for single-cell and highlighted 
dependencies. This figure highlighted 
that the packages are very centralized 
because the whole community had built 
on top of our ‘anndata’ and our ‘scanpy’ 
packages, which are hugely popular 
for analysis with Python. We knew that 
these core packages are only really being 
maintained by our lab, alongside a few 
external contributors. It had grown a bit 
out of our scope, it had become too big. 
We also noticed other major packages, 
such as scvi-tools, muon, scirpy, in the 
community that other people have built 
that we thought must also be available 
and maintained in the future.

Hence, we talked to the other developers 
and thought, ‘Okay, can we find a 
consortium that maintains all of these 
packages jointly’, to ensure that it's not 
only in our lab's hands anymore, but in the 
hands of everyone together? This would 
enable us to share our resources and 
jointly define the future of these packages. 
That's why we founded scverse. You can 
see it as a Bioconductor but for Python, 
and initially with a single-cell focus, but 

this might change in the future. Currently, 
we've hosted several hackathons and are 
strongly focused on community building. 
We recently became a NUMFOCUS-
sponsored project, which means that we 
are moving even further away from our 
labs and becoming our own entity.

FLG: Great, and can you also tell me a 
little bit about the community aspect 
and the teaching aspect of scverse?

Anna: Scverse is more than just the 
core developers that have built these 
foundational tools for analysing single-cell 
data. For us, the community that wants to 
interact and engage with developers and 
others in the field is the main focus of our 
efforts. We actively interact on multiple 
different communication channels with 
our community, namely GitHub, discourse, 
and also on Zulip. People can join these 
channels, raise issues and ask questions. 

Beyond these channels, we host the 
scverse open community meetings every 
second Tuesday. In these meetings, we 
invite people that developed packages 
that are part of the ecosystem of 
scverse. People can come and listen 
to the core developers, ask questions, 
and learn how scverse packages are 
built and can be used.  They are a great 
way of getting to know the developers 
behind the projects. u
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Single-Cell Best Practices. Anna and Lukas have spearheaded another highly valuable 
community resource. They used the expertise of scverse and many other experts to build a 
guide of Single-cell Best Practices21. Naturally, every experimental design requires 
adjustments from a standard guide, but the community has been calling out for a guidebook 
of how to perform generic single-cell analysis to use as a baseline.. The advice in the book 
ranges from analysis methods for single-cell RNA sequencing to tackling the challenges in 
spatial omics and multimodal integration. This book is informed and reviewed by experts 
and can be used by anyone. The goal is for this to be a living resource which will be updated 
as the technology improves.

Additionally, our YouTube channel hosts all the community 
meetings for those who couldn’t attend or joined our 
community later. For in-person engagement, we also 
organize scverse hackathons. Currently, these are invite-
only and mainly driven by core members of the scverse, but 

we are also planning to open them up to everyone in the 
community. And last, but not least, we will soon also host 
scverse workshops, the scverse training program for learning 
how to perform single-cell analysis in Python, and our first 
scverse conference in 2023. 

FLG: Let’s talk about your resource, the 
‘best practices in single-cell’. Do you 
think community-led movements such 
as scverse and ‘best practices in single-
cell’ are the best way to keep on top of 
the mass production of analysis tools? 
Also, for the ‘best practices in single-
cell’, you did a really good job of picking 
out a typical/starting point toolset to 
use for single-cell analysis. How do you 
plan to kind of keep on top of all these 
new methods that are emerging?

Anna: One reason why Lukas and I 
started the best practices in single-cell 
was in fact the immense collection of 
tools. As Lukas mentioned, our colleague 
Luke Zappia maintains a website 
(scrna-tools.org) tracking the number of 
analysis tools available for single-cell, 
and it recently exceeded 1,500 tools. 
And it’s super challenging to stay up to 
date on what works best and why, not 
only for new joiners in the field. On top 
of that, our colleague Dr. Malte Luecken 
published a paper in 2019 on current 
best practices in single-cell RNA-seq 
analysis - we internally call it the best 
practices 1.0 paper. This paper and its 
recommended workflow were a great 
success, but only covered scRNA-seq 

analysis. Since 2019, the field grew 
massively and there was an increasing 
need for an updated version also 
accounting for additional modalities. 
This gave us the motivation to write a 
whole new book on this.

Of course, it is challenging to maintain 
the best practices, but that's also where 
we want to engage the community. We 
encourage everyone to propose updates, 
new notebooks, or chapters to the best 
practices online book. Internally, we 
update the online book whenever there is 
a new benchmark published, so we ensure 
our recommendations are up-to-date. 
We also implemented a review process 
for the online book to ensure no bias in 
recommended methods or tools. Our goal 
for the best practices book is that it’s a 
living resource from the community to the 
community and not just driven by a small 
group of people in Munich. 

FLG: What was the motivation to create 
Single-Cell Best Practice book, 2.0?

Lukas: As Anna mentioned, first of all, 
it's the number of tools. We can’t keep 
track of them anymore, and we also 
need to know which ones work best. u

ANNA SCHAAR 
PhD Candidate, Fabian Theis Lab  

Institute of Computational 
Biology, Helmholtz Munich

LUKAS HEUMOS 
PhD Candidate, Fabian Theis Lab  

Institute of Computational 
Biology, Helmholtz Munich

https://www.sc-best-practices.org/
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COMMUNITY DISCUSSIONS . AI, BENCHMARKING AND WHAT IS A CELL TYPE?

Benchmarking in proteomics and spatial. The less mature fields such as spatial transcriptomics and proteomics have 
yet to build centralized benchmarking criteria and gold standards, but this process is well underway. One example is 
the benchmarking and community-based guidance that is being accumulated for single-cell proteomics22, spearheaded 
by Nikolai Slavov, Associate Professor, Northeastern University. Furthermore, there are resources that have begun 
benchmark specific aspects of spatial analysis, such as cellular deconvolution23. 

The second reason is that we want to formulate an opinion that 
is mostly neutral and less subjective. So, an approach that is 
benchmarking-based is what Dr. Malte Luecken (Group leader, 
Helmholtz Munich) pioneered. However, that inspiring effort 
is outdated because he only performed it on RNA-seq, and the 
field has gone multimodal. We wanted to improve on that and 
create a living standard, so we wrote the book together with 
the associated paper. We just want to ensure that we have a 
resource that can be updated and that guides users. 

The third reason is teaching. Why do we constantly have 
to redevelop our resources? Because the tools change, the 
approaches to analysis change, and we just want to develop 
these practices with the community so that it's not just us 
updating the teaching materials. Instead, we are updating 
them with the community, which is way more efficient.

FLG: And having put together a massive resource like this 
book, are there any areas of analysis that you feel are 
coming to a peak and are there obvious areas that are still 
rapidly developing?

Anna: Interestingly, all areas are still moving in the field. 
For the best practices online book, we differentiate tools into 
benchmark validated, well-described, or well-established 
analysis steps and novel analysis steps that still need to 
be fully explored by the community. Interestingly, we see 
movements and new developments in all three categories. 
One example is a classical preprocessing step for single-cell 
RNA-seq data: normalization. A benchmark published this 
year claimed they found the best working normalization 
techniques. But since those well-established analysis steps 
are already commonly used by the community, it is, of 
course, easier to describe in the best practices book. The 
more challenging aspect is novel modalities and analysis 
steps. We simply still need to learn and investigate how 
to best analyse new single-cell measurements and what 
methods and tools work best. So, there's more freedom and 
movement in general. For the best practices online book, 
however, we see movement and development in all aspects.
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CHAPTER 8

GLIMPSING THE FUTURE. WHAT MIGHT 
SINGLE-CELL AND SPATIAL BIOLOGY LOOK 

LIKE IN 15 YEARS’ TIME?

THE RATE OF PROGRESS IN THE PAST 15 YEARS OF SINGLE-CELL 
BIOLOGY HAS BEEN ASTONISHING. THE UPTAKE OF SPATIAL BIOLOGY 

TO VIEW SINGLE CELLS IN CONTEXT HAS BEEN EVEN FASTER. 
ULTIMATELY, WE HAVE SEEN THE POWER THIS TECHNOLOGY HAS TO 
RESOLVE CELL HETEROGENEITY IN HEALTH AND DISEASE AND BRING 

US CLOSER TO TREATMENTS.

A recent editorial2 asked what does the future hold for single-cell biology? An impossible question to answer with any 
accuracy in anything but the immediate short term. The editorial envisioned a single-cell world in which large scale 
data is standardized and brought together to help understand disease states and perturbations caused by drugs. A 
world in which multimodal data are integrated to understand the spatiotemporal steps that individual cells take when 
developing into tissues. A world with the ability to expand Live-seq to perform real-time measurements of multimodal 
molecules across many cells. A world where, perhaps ultimately, we create a machine learning model of the cell that 
we can interact with and test the impacts of diseases in silico.

A conservative view of the future might expect better models and bigger data. It would expect more modalities to be 
integrated into the ever expanding atlases, including data from perturbations and altered phenotypes. 

Image Credit: Wen, et al.1
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GLIMPSING THE FUTURE. WHAT MIGHT SINGLE-CELL AND SPATIAL BIOLOGY LOOK LIKE IN 15 YEARS’ TIME?

The 15-year anniversary of single-cell transcriptome sequencing is just around the corner. To the eyes of someone in 
2009, the cell-throughput and multiomics capacities of these tools today look like centuries of progress rather than 
the work of one and a half decades. We thought we would challenge our contributors with the question: What do you 
think single-cell and spatial methods will look like in 15 years’ time?

FLG: What do you think single-cell and spatial methods might look like in 15 years’ time?

JASON D. BUENROSTRO 
Associate Professor & Broad Institute Member 
Harvard University & Broad Institute of MIT and Harvard

Jason: What I hope for, and it's hard to know if we'll actually get there, is that that single cell biology becomes boring, 
because if it becomes boring, that means it's mature enough that people will just use it without necessarily having to 
consider the question, ‘what analysis tool do I use?’. I'm hoping it'll be as robust as some of the alignment tools we use 
for aligning bits of the genome. Single-cell tools will be like that, because when that happens, then we can start to have 
a real impact in the clinic and can use this for diagnostic purposes. 

That's where I like to think that single-cell and spatial genomics will be in 15 years. It'll be commonplace and routine 
within research with a really strong, mature sense of what's a robust measurement, and what is an artifact, and how 
we analyse the data. That area will be so robust that we'll be tempted to start using it for diagnostics to improve 
patient outcomes. That's my vision for the future.

ROBIN BROWAEYS 
Team Leader – Bio-IT Support 
VIB Centre for Inflammation Research, Ghent University

Robin: I'm hoping to see clinical impacts at that point. In single-cell, we have way more datasets generated for many 
more biological systems, mouse models, diseases. The technology has become much more accessible to people and 
that also sparks tremendous interest in computation tool development. I think the same will happen for the spatial 
field. Many more datasets from many more interesting biological cases that will be studied by those technologies. That 
will then spark an interest in computational tools to analyse it. 

It's already started, of course. In terms of technology development, I hope we will have single cell resolved 
transcriptome-wide spatial data. It would be a tremendous wealth for cell-cell communication modelling because you 
can then really start modelling interactions between cells in the tissue context.
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GLIMPSING THE FUTURE. WHAT MIGHT SINGLE-CELL AND SPATIAL BIOLOGY LOOK LIKE IN 15 YEARS’ TIME?

JARED K. BURKS 
Professor & Co-Director, Flow Cytometry & Cell Imaging Core Facility 
The University of Texas MD Anderson Cancer Centre

Jared: So, I started giving talks about spatial biology with a Lego sphere. I described all of these different colour blocks 
as different cell types, and in this meeting, I threw this up into the air and smashed it on the stage. I picked up a few of 
the parts, and I said, tell me who was next to who ,tell me who influenced who, and how they communicated with one 
another. And who can put it back together in the same sequence that it was in? 

That captivated everybody, partly because it was just after lunch, and everybody was a little drowsy, and when it hit 
that wooden stage, it made the biggest noise, and everybody's head shot up, ‘whoa, what just happened?’. But it really 
drove home the point that these disaggregation technologies, where we're really looking at straight composition, lack 
all of the spatial information, they lack how our neighbours influence us. 

I don't know where you live, but clearly you have neighbours. And you can imagine if you have a loud, noisy neighbour; 
how that might impact your sleep, which would impact your job performance, which would have this long spiralling 
effect. Our neighbours influence us. Where we live influences us. Where's your closest place to get food? Where do 
your kids go to school? All of these things are really relevant. 

So where do I hope spatial will be in 15 years? I hope we can figure out how to put this Lego sphere back together and 
we can functionally understand how this works. We've got to understand all of these networks, the communication 
outside of the cell, the communications direct cell-to-cell, the neighbour effect, the construction effect. I'm hoping 
that in 15 years we'll have that data then we can really predict and understand functional neighbourhoods and non-
functional neighbourhoods. And that we can develop personalised therapies based on your particular neighbourhood, 
and not just in general. I'm hoping that, by then, the clinic will have accepted these technologies.

HAIQI CHEN 
Assistant Professor 
UT Southwestern Medical Centre

Haiqi: I think there are a couple of things that will become very routine by that point. 

Firstly, as long as there’s not an even more superior technology that will replace spatial technologies all together, I’m 
assuming that multimodal spatial capture will become routine. You’ll be able to capture protein, RNA, DNA and all the 
other important cellular modalities all at once plus the spatial information too. 

Secondly, spatial analysis will go 3D. Currently, analysis of tissue is mostly done on thin tissue slices (2D). One 
approach is to do spatial analysis of a series of 2D slices and then reconstruct them back into the 3D tissue. Moreover, 
we can even achieve 4D with a time component in it. 

The last thing that I think will become quite common will be spatially resolved functional analysis by combining spatial 
capture technologies with CRISPR screens, or other functional analyses. This would allow not only the assessment of 
cell intrinsic effects of a gene perturbation, but also examination of its extracellular effects. That's something that I'm 
personally really interested in, and my lab is trying to work on something like that.



The Spatial and Single-Cell Analysis Playbook 100

GLIMPSING THE FUTURE. WHAT MIGHT SINGLE-CELL AND SPATIAL BIOLOGY LOOK LIKE IN 15 YEARS’ TIME?

SILVIA DOMCKE 
Affiliate Assistant Professor, Dept. of Genome Sciences, University of Washington 
Associate Director, Head of Human Genomics, Gordian Biotechnology 

Silvia: It is becoming increasingly feasible to systematically dissect gene regulation in both healthy and diseased 
states by combining in silico predictions with large scale experimental perturbations and a variety of phenotypic 
readouts, involving both spatial and temporal components. If the ultimate goal is the ability to intentionally 
manipulate cell states, e.g., for therapeutic purposes, it will be fascinating to see which single-cell measures 
besides gene expression will be most informative, and required, along this path. 

LUKAS HEUMOS 
PhD Candidate, Fabian Theis Lab 
Institute of Computational Biology, Helmholtz Munich

Lukas: I think that people will still be arguing about the same basic fundamental problems in 15 years. 
Differential gene expression predates single-cell data, but people still argue about the best tools. I wouldn't be 
surprised if that's also the case in 15 years. Also, I believe that foundational models will become a significant 
share of analysis tools. Furthermore, the analysis of single-cell data will be more automated, and we will likely 
be able to better integrate modalities. Currently, they are still being analysed quite separately, and it's complex 
to analyse them jointly. Finally, the spatial field will have matured in 15 years, and it will just be another 
analysis that you routinely conduct, so you will always look at single-cell measurements resolved in space 
because it makes more sense.

YANXIANG DENG 
Assistant Professor 
University of Pennsylvania

Yanxiang: I think we will be able to profile more omics at the same time in the tissue section. I think we will be 
able to reconstruct spatial omics in 3D. I.e., the reconstruction of three-dimensional positional tissue anatomy. 
Finally, we need to add the dimension of time to spatial omics, so that we can measure the cellular dynamics 
and behaviour.
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MAI CHAN LAU 
Assistant Principal Investigator 
A*STAR’s Bioinformatics Institute (BII) and Singapore Immunology Network (SIgN)

Mai Chan: I hope to see the sensitivity and the resolution of spatial technologies improve by leaps and bounds. 
I would expect the technology to be more affordable, and the handling of tissues and workflow to be more 
robust. The handling process can be subjective, and failure of certain techniques could result in wastage of 
tissue, along with associated costs and efforts. Ultimately, all the resolutions of these issues will converge. For 
spatial omics, or at least spatial transcriptomics, the resolution is getting higher and higher. Now, it's down to 
single cell level. Thus, when all these technical and cost issues are addressed, single cell sequencing may not be 
necessary anymore. I also believe that as researchers begin exploring other areas of spatial omics – like spatial 
metabolomics, spatial TCR, and ribo-sequencing – the future will be dominated by precision medicine informed 
by AI-enabled spatial multi-omics. 

MOHAMMAD LOTFOLLAHI 
Scientist, Helmholtz Munich/Wellcome Sanger institute 
Director of Machine Learning , Relation Therapeutics

Mo:  I love this situation with AI and text, where we are for example, with ChatGPT and deep generative models. 
The power here is in training a model on millions of samples and examples so that it learns. So, the ultimate goal is 
having these gigantic AI algorithms that we can train on all of these datasets. Can you understand the specialised 
or global behaviour of all cells across all tissues using images that you can get from spatial, while also considering 
the effects of drugs? Then you have this gigantic algorithm that you can simply ask ‘what is the effect of changing 
this gene if the cell was in this location?’ This algorithm would then generate that for you. Or down the line, given a 
transcriptome from a patient, you could just give it to this algorithm and the algorithm identifies the cell types that 
were affected by disease and the potential drugs that you can prescribe for this patient. Combined with patient 
information, it might facilitate augmented decision making for clinical applications. That's my hope here. And these 
consortium efforts, such as the Human Cell Atlas are actually a really cool resource for building these type of things. 
I think this would be the future. I'm super positive.

ANNA SCHAAR 
PhD Candidate, Fabian Theis Lab 
Institute of Computational Biology, Helmholtz Munich

Anna: I agree with Lukas on all three points, especially the last one. Additionally, there will be new assays coming 
up, we already see this trend now with spatial-ATAC or spatial maps of receptors in single-cell. Some of the 
analysis issues we are currently facing in spatial biology will be hopefully resolved, like integrating across space or 
normalizing with respect to a cell's physical location. There are still a lot of open questions in the single-cell field, 
but I hope at the speed we're currently developing methods and insights, that we get to the core of how cells truly 
function with respect to their physical environment and depending on various different measures.
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LUCIANO MARTELOTTO 
Associate Professor & Lab Head, Single Cell and Spatial-Omics Laboratory 
University of Adelaide, Australia

Luciano: I'm hoping that things like genetic perturbations are going to be much easier. I also anticipate that 
computational biology will be offered as a standalone subject in universities. This is crucial because, currently, there is 
a noticeable shortage of computational biologists. While tools in molecular biology are advancing rapidly, integrating 
computational expertise remains vital. 

I expect the amount of transcript per cell to increase along with enhanced multiplexing capabilities. It would be more 
beneficial to focus on sequencing a broader range of samples rather than delving deeper into individual cells, although 
both approaches hold their significance. 

As for spatial technologies, I believe prices will become more affordable. However, sequencing technologies, given 
their versatility and the potential for innovation, will likely remain dominant for a considerable period. Imaging 
technologies have their limitations, especially with challenges like molecular crowding. 

Addressing these issues is essential before we can progress further. This isn't to say that sequencing is without its 
problems, but it does offer a broader range of possibilities. I envision spatial technologies evolving to accommodate 
more 'omes' from identical sections and allowing multi-dimensional segmentations. Being able to create a 3D 
reconstruction would be a game-changer.

CATIA MOUTINHO 
Founder & Scientific Advisor 
The Single-Cell World 

Catia: I don't plan more than one year in advance. If you ask me, what will I be doing in five years? No idea. Well, I 
can tell you what I wish. In 15 years,  I would love to put a biological tissue or cells in a machine, with which we could 
extract all the information - multi omics information and also spatial information in 3D -  from the tissue or cells in one 
go. This is what I would love to see.
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LINDA ORZOLEK 
Director, Single Cell & Transcriptomics Core 
Johns Hopkins University

Linda: I don’t know what it’s going to look like in two years, let alone 15. I think in 15 years, you’ll have a single 
cell that you’ll be able to identify the location of all of the transcripts in the cells. You’ll then be able to pull out the 
transcripts and do full length sequencing on them, not just rely on these probe-based methods. Maybe it’s still the 
naïve undergrad in me, but I think that these technologies are evolving so rapidly that, in 15 years, I struggle to see a 
limitation. With AI advancing as rapidly as it is, what we can’t comprehend, AI may be able to.

I also think we will be consistently working at subcellular resolution. New in situ sequencing methods are already 
allowing us to target hundreds of genes at once, with claims that thousands are coming in the next year. So, a year or 
two after that, is 18,000 that much of a problem? I don't think that it should be. I think they will figure out the lasers 
and the fluorescence etc. to advance it. I think that it'll combine with AI to make inferences that are beyond what 
we can see and understand. I think that everybody will be able to afford it, and I think it will be much more readily 
available in a clinical, personalized medicine setting. And I think, and I hope and pray really, that it will be used as a 
standard for testing and diagnostic treatments for a variety of situations within 15 years. 

TANCREDI MASSIMO PENTIMALLI 
PhD Student, Nikolaus Rajewsky Lab 
Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum (MDC) 
Berlin School of Integrative Oncology (BSIO), Charité – Universitätsmedizin Berlin

Tancredi: Single-cell and spatial technologies are developing so rapidly that the field could be radically different 
already in few years from now. Things that seemed impossible a few years ago, such as transcriptome-wide, single-cell 
resolved, spatial transcriptomics, are now coming within reach - even for FFPE tissues. Importantly, FFPE compatibility 
will drastically speed up the translational impact of single-cell and spatial omics technologies, enabling the analysis of 
routine clinical samples at unprecedented resolution. 

The simultaneous profiling of cell types, states and crosstalk along disease trajectories will speed up the identification 
of mechanism-based, novel therapeutic strategies. With the growing clinical relevance of spatial technologies, 
approaches to spatially analyse samples in their full thickness will be urgently needed. Furthermore, methods to 
spatially perturb tissues (e.g., optogenetics) will be required to test specific hypotheses.
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ANDREW RUSSELL 
Postdoctoral Fellow, Fei Chen Lab 
Broad Institute of MIT and Harvard

Andrew: I think about this a lot, actually. If you are into sci-fi, or if you like being optimistic about the future, which 
I think we have to be at the moment, then you know we can come up with some really amazing ideas. You can be 
excited about the future that humanity might have with these technologies, both in the healthcare realm and in 
other areas. One thing that I do think we'll be able to do is to be able to profile 3D tissues. I don't know what format 
this technology will take, but if we could profile large 3D thick tissue areas, we could take out a region of a tumour or 
another bit of tissue and we would put it into this technology and we would be able to profile that tissue completely in 
3D and reconstruct that. We're not very good at doing it now. We can take thin sections of a tissue, and we can profile 
them fairly well, but I think that three-dimensional component is largely untouched. 

In addition to that, we could get better at understanding small molecules. We are pretty good with macromolecules, 
proteins and DNA and RNA, but the exciting spaces will be in between that. We will be looking at metabolites, at lipids 
and at signalling molecules. Closely integrated with that is the question of how we build efficient models of those systems 
from the data we collect using new technologies to perturb them in silico. And whether we could do that at scale. That 
would be very fast and cost efficient - it would be amazing. We could take out a tissue biopsy, we could run millions of 
simulations on how you treat that tissue, and then we would probably, within an hour or two, would then be able to find 
a course of treatment that would be most effective. Maybe 15 years is too soon, but things can grow exponentially. 

MICHA SAM BRICKMAN RAREDON 
Research Group Leader, Departments of Anaesthesiology, Pulmonary, Critical Care & Sleep 
Medicine and Immunobiology, Yale School of Medicine

Sam: I think the resolution on spatial is going to get better and better. I do think that's possible. I think that we're 
going to start to have three-dimensional spatial data generated in the same way that microscopy has shifted in the last 
decade from largely two-dimensional slices of tissues to whole organ clearing. I suspect we may start to see techniques 
that are three-dimensional omics technologies where you can see the whole organ, and that's probably very important 
and necessary, because these organs are 3D. If you're going to study spatial patterns, you need to see what's in and 
out of plane. That's probably going to be the biggest advance. 
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AZUCENA SALAS 
Inflammatory Bowel Disease Group leader 
Fundació de Recerca Clínic Barcelona-IDIBAPS, Hospital Clínic Barcelona 

Azucena: I think that we are just starting to understand the potential of spatial biology, which I am convinced 
will bring upon a revolution in our understanding of diseases. Unravelling disease complexity (heterogeneity 
across patients), which is one of the most important current challenges in medicine, will require information 
not only on cell states, but on their context and interacting partners in a way that spatial biology can provide. 
Based on the speed at which the field (both technologies and computational tools) is moving, I am convinced 
that the future of precision medicine will be spatial. My personal hope is that we see the routine application of 
these technologies to patient care.

DENIS SCHAPIRO 
Research Group Leader 
Heidelberg University Hospital

Denis: I believe that all omics will be spatial so I think we will be able to analyze the full proteome, 
transcriptome, metabolome, translatome, lipidome and more with single cell resolution. Additionally, we will 
be able to do so in 3D. For translational applications in the next 15 years, I hope that we will have very robust 
methods that will enable actionable insights for patients. I believe there's a huge potential for something like 
pathology 2.0 or 3.0, with the combination of digital pathology and deep molecular cellular profiling. I hope my 
predictions will age well, so that we will be able to discover biomarkers which will translate to better diagnosis 
and treatments as soon as possible.

EMILY STEPHENSON 
Senior Research Associate, Haffina Lab 
Newcastle University

Emily: It is a very exciting time for single-cell and spatial technologies, and I think that over the next 15 years we will 
continue to see improvements to the technologies and the development of new methods. In particular, we will see 
higher-resolution multimodal maps in which single-cell and spatial technologies will be seamlessly integrated. 

Three-dimensional spatial omics technologies will become more refined, enabling the visualisation of intricate cellular 
interactions within intact tissues. This will provide a deeper understanding of cell-to-cell communication, immune 
responses, and microenvironmental influences in their natural context. 

Finally, I think single-cell and spatial technologies have the potential to be instrumental in tailoring medical treatments 
to individuals. Cellular heterogeneity data could guide the selection of therapies, optimising their effectiveness while 
minimizing side effects.
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JOVAN TANEVSKI 
Research Area Leader, Saez-Rodriguez Group, Institute for Computational Biomedicine, 
Heidelberg University and Heidelberg University Hospital

Jovan: Firstly, I expect these technologies to consolidate and standardize, which would greatly facilitate the 
downstream analyses. I'm expecting a lot of improvement both in in single-cell and in spatial technologies in terms 
of reliability and quality of the data. There are a lot of synergies between these technologies but there is still a lot 
to explore at their intersection. For example, in the direction of reducing costs by efficient and complementary 
experimental designs.  

Secondly, I expect further developments in single-cell and spatial multiomics, opening up new venues for spatially 
aware integrative analyses and exploration of context specific relationships between the modalities. 

Finally, I expect that the quantity and the quality of perturbational and spatiotemporally resolved data that will be 
available, will allow us to start building comprehensive mechanistic models of tissue biology.

FAN ZHANG 
Assistant Professor 
University of Colorado School of Medicine

Fan: Single-cell multi-omics approaches are revolutionizing our understanding of disease heterogeneity and 
pathogenesis. I expect that approaches such as single-cell spatial transcriptomics will help answer the key 
immunopathological questions in the next 15 years: how different cell phenotypes communicate with each other 
to create diverse biological niches in diseases. How to bring the spatial and temporal axes together into single-cell 
biology. How to use single-cell biological findings more efficiently to impact clinical interpretation to further provide 
insights into disease progression. I expect that single-cell biology approaches could push the field towards these 
directions with fundamental principles in a multi-disciplinary manner.
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